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1.1 What are Partial Differential Equations?

Given a function u = u(x1, x2, . . . , xn), a partial differential equation in u is an
equation that relates any of the partial derivatives of u to each other and/or any of the
variables x1, x2, . . . , xn, and u.

Notation:

ux =
∂u

∂x
, uxy =

∂

∂y

(
∂u

∂x

)
=

∂2u

∂y∂x
,

also
uxzyx = uzxxy = uyxzx ,

etc.

The order of a PDE is the order of the highest derivative which appears in the equation.

Example 1: u5
xxz + uxxyz = uzzz is a PDE of 4th order in u(x , y , z).

A solution of a PDE is any function u which satisfies the PDE identically, that is, for all
possible values of the independent variables.

Example 2: u(x , y) = cx + d is a solution of

u5
xxz + uxxyz = uzzz

for any choice of the constants c and d .
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1.1 What are Partial Differential Equations? (cont’d)

Required: any solution u of an nth-order PDE has the property that all of the nth partial
derivatives of u exist and are continuous.

Some important PDEs:

ut + cux = 0 convection (also advection or transport) equation

ut + uux = 0 Burger’s equation (from the study of the dynamics of gases)

u2
x + u2

y = 1 eikonal equation (from optics)

ut = α2uxx heat equation (in one space variable)

utt = c2 (uxx + uyy ) wave equation (in two space variables)

uxx + uyy + uzz Schrödinger’s equation (time independent, in three space

+[E − V (x , y , z)]u = 0 variables; from quantum mechanics)

urr + 1
r
ur + 1

r2
uθθ = 0 Laplace’s equation (in polar coordinates)

utt + α4uxxxx = 0 Euler–Bernoulli beam equation
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1.2 PDEs We Can Already Solve

Method: “antidifferentiate” with respect to one variable while treating the other
variables as constants.

Example 1: Find all functions u = u(x , y) which solve

ux = 0.

We get

u =

∫
0 dx = f (y)

where f is any arbitrary function of y (and where
∫
. . . dx is any antiderivative with

respect to x while treating y as a constant).

Since
u = f (y)

represents all possible solutions of ux = 0, we call it the general solution of ux = 0.

So, where the general solution of an ODE involves arbitrary constants, the general

solution of a PDE involves arbitrary functions.

4/28



1.2 PDEs We Can Already Solve (cont’d)

Example 2: Do the same for uxy = cos x . First, we have

ux =

∫
cos x dy = y cos x + f (x).

Then,

u =

∫
(y cos x + f (x)) dx .

Now, what is
∫

f (x) dx? If we antidifferentiate f (x) with respect to x , we just get
another function of x . However, we also get an “arbitrary constant,” that is, in this
case, an arbitrary function of y . So∫

f (x) dx = f1(x) + g(y),

and our general solution is

u = y sin x + f1(x) + g(y).

Finally, since f , f1, and g are arbitrary, we drop the subscript, i.e.,

u = y sin x + f (x) + g(y),

where f and g are arbitrary functions.
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1.3 Initial and Boundary Conditions

Heat equation:

ut = α2uxx ,

 

x 
x = 0 x = L 

e.g., for metal rod, where u(x , t) = temperature at point x , at time t.

Initial condition: initial temperature of the material at each point x , at some specified
time t = t0 given by function f

u(x , t0) = f (x), 0 ≤ x ≤ L.

Boundary conditions: we need to know what is going on at the endpoints. For
example, the left end may be held at a constant temperature u0

u(0, t) = u0, t > 0,

and the right end may be insulated, i.e.,

ux(L, t) = 0, t > 0.

This is an example of initial-boundary-value problem (IBVP).

Compare: IBVP and initial-value problem (IVP).
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1.3 Initial and Boundary Conditions (cont’d)

Well-posed problem: the initial-boundary-value problem has a unique solution.

Precise definition: an initial-value or initial-boundary-value problem is well-posed if

1 A solution to it exists.

2 There is only one such solution (i.e., the solution is unique).

3 The problem is stable (no concerns in this book!).

To determine a unique solution for ODEs of order n: we generally need n initial
conditions.

For PDEs, the situation is much more complicated! Notice that heat equation has

one time derivative and one initial condition, while it has two x-derivatives and two

x-boundary conditions. It is often the case!
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1.4 Linear PDEs – Definitions

Linear PDEs are defined in exactly the same manner as linear ODEs:

a0(x)y (n) + a1(x)y (n−1) + . . .+ an−1(x)y ′ + an(x)y = f (x),

or using the so-called linear operator L

L[y ] = a0(x)y (n) + a1(x)y (n−1) + . . .+ an−1(x)y ′ + an(x)y = f (x),

such that
L[cy ] = cL[y ] and L [y1 + y2] = L [y1] + L [y2]

for any constant c and any functions y1 and y2 in the domain of L.

Definition: The PDE in u = u(x1, x2, . . . , xn)

L[u] = f (x1, x2, . . . , xn)

is a linear PDE if
L[cu] = cL[u]

for all constants c and all functions u in the domain of L, and

L [u1 + u2] = L [u1] + L [u2] ,

for all functions u1 and u2 in the domain of L. Also, if an operator satisfies both

conditions, we say that it is a linear operator (otherwise, it is a nonlinear operator).
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1.4 Linear PDEs – Definitions (cont’d)

We can prove that L is linear if and only if

L [c1u1 + c2u2] = c1L [u1] + c2L [u2]

for all constants c1 and c2 and all functions u1 and u2 in the domain of L.

Example: y 2uxx + uyy = 1. Here, L[u] = y 2uxx + uyy and

L [c1u1 + c2u2] = y 2 (c1u1 + c2u2)xx + (c1u1 + c2u2)yy

= c1y 2u1xx + c2y 2u2xx + c1u1yy + c2u2yy

= c1
(

y 2u1xx + u1yy

)
+ c2

(
y 2u2xx + u2yy

)
= c1L [u1] + c2L [u2] ,

so this PDE is linear.

Definition: Given the linear PDE L[u] = f , if f ≡ 0 on some region (that is, f is the
zero-function on some region), we say that the PDE is homogeneous on that region.
Otherwise, the PDE is nonhomogeneous.

Example 1. The PDE xuxx − 5uxy + y 2ux = 0 is homogeneous (on the x-y plane).

Example 2. u2
x + u2

y = 0 cannot be said to be homogeneous or nonhomogeneous because

it is not a linear PDE to start with.
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1.5 Linear PDEs – The Principle of Superposition

Definition: Given functions u1, u2, . . . , un, any function of the form

c1u1 + c2u2 + . . .+ cnun,

where c1, c2, . . . , cn are constants, is called a linear combination of u1, u2, . . . , un.

Theorem (principle of superposition of solutions for linear PDEs): If u1, u2, . . . , un are
solutions of the linear, homogeneous PDE L[u] = 0, then so is any linear combination of
u1, u2, . . . , un.

Proof:

The fact that u1, u2, . . . , un are solutions gives

L [u1] = L [u2] = . . . = L [un] = 0.

Then, for any linear combination c1u1 + c2u2 + . . .+ cnun,

L [c1u1 + c2u2 + . . .+ cnun] = c1L [u1] + c2L [u2] + . . .+ cnL [un]

= c1 · 0 + c2 · 0 + . . .+ cn · 0 = 0.
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1.5 Linear PDEs – The Principle of Superposition (cont’d)

Recall: for a linear homogeneous ODE-n, we need only find n linearly independent
solutions, and its general solution consists of all possible (finite) linear combinations of
these solutions.

However, life is much more complicated in the realm of PDEs! Often, we will need
to find infinitely many solutions, u1, u2, . . ., of a linear homogeneous PDE to construct
its general solution

u = c1u1 + c2u2 + . . . =
∞∑
n=1

cnun. (1)

Question of convergence – this infinite linear combination is an infinite series – for any
given choice of the coefficients, (1) may diverge for all values of x , or it may converge
for some values of x but not for others.

Assumption: whenever (1) converges, it satisfies the linearity condition

L

[
∞∑
n=1

cnun

]
=
∞∑
n=1

cnL [un] . (2)

Therefore, if each un is a solution of L[u] = 0, then so is the linear combination (1) of

these solutions. When (2) holds, we say that we may differentiate the series

term-by-term.
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1.6 The Method of Characteristics I

Example 1: Find all solutions of the PDE

2ux + 3uy = 0.

We apply transformation
ξ = x , η = Ax + By

and choose constants A and B so that the transformed PDE has no uη term:

ux = uξ + Auη, uy = Buη.

The PDE becomes
2uξ + (2A + 3B)uη = 0.

Choosing A = 3 and B = −2

ξ = x

η = 3x − 2y
or

x = ξ

y =
3

2
ξ − 1

2
η

reduces PDE to
2uξ = 0,

where
u = g(η) = g(3x − 2y)

and g is any arbitrary function (must be differentiable).
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1.6 The Method of Characteristics I (cont’d)

Notice: for all points on the line 3x − 2y = c, where c is a given constant, we have

u(x , y) = g(3x − 2y) = g(c),

that is, u is constant along each of the lines 3x − 2y = c. These important lines are
called the characteristics or characteristic curves of the PDE, while ξ and η are called
characteristic coordinates (definition of characteristics comes later in this chapter.)

Example 1 (cont’d): Suppose that the PDE is to be solved subject to the additional
condition

u(x , 0) = sin x .

Then,
u(x , 0) = g(3x) = sin x

and, letting z = 3x , x = 1
3
z , we have g(z) = sin

(
1
3
z
)
. The unique solution to the

system
2ux + 3uy = 0,

u(x , 0) = sin x

is

u(x , y) = sin
1

3
(3x − 2y) = sin

(
x − 2

3
y

)
.
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1.6 The Method of Characteristics I (cont’d)

The condition u(x , 0) = sin x is called a side condition (initial condition if y = t). The
curve along which the condition is given is called the initial curve, and the system is an
initial-value problem.

Relationship between the solution in the transformed coordinates (ξ, η) and the actual
solution:

5
4

3

t

-2
-10 2

-5

x

10

0

u(
x,

t)

5 010

2

M: Chapter 1 characteristics.m

 
η 

ξ 

y 

 η = 0 
η = -1 
η = -2 
η = -3 

η = 3 
η = 2 
η = 1 

(a) characteristics in (ξ,η)-plane (b) characteristics in (x,y)-plane 

Graphical interpretation: We replace y by
the time variable, t. If we take “snapshots”
of the solution u(x , t) = sin

(
x − 2

3
t
)

in the
(x , u)-plane at various times t0, we can
think of our solution as an initial curve
u = sin x , which moves to the right at
constant velocity.
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1.6 The Method of Characteristics I (cont’d)

More generally: given the first-order linear PDE

aux + buy + cu = f (x , y),

where a, b, and c are constant, we may always proceed as above. We find that the
transformation

ξ = x

η = bx − ay
or

x = ξ

y =
b

a
ξ − 1

a
η

(for example) reduces this PDE to

auξ + cu = F (ξ, η),

where F (ξ, η) is just the function f (x , y) with x = ξ and y = b
a
ξ − 1

a
η.

Example 2: Solve
ux − 4uy + u = 0,

u(0, y) = cos 3y .

Again, we let
ξ = x and η = Ax + By

and the transformed PDE becomes

uξ + (A− 4B)uη + u = 0.
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1.6 The Method of Characteristics I (cont’d)

Example 2 (cont’d): We may choose A = 4 and B = 1, so that

ξ = x and η = 4x + y ⇒ uξ + u = 0.

Its solution is
u = g(η)e−ξ or u = g(4x + y)e−x ,

where g is any function. Then, applying the initial condition, we have

u(0, y) = g(y) = cos 3y ,

so our final, unique solution is

u(x , y) = e−x cos 3(4x + y).

-2
3

-1

0

u(
,

)

2

1

-5

2

1 0
0 5

-2
3

-1

0

u(
x,

y)

2

1

-5

x

2

y

1 0
0 5

Visualization in MATLAB: Chapter 1 characteristics.m
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1.6 The Method of Characteristics I (cont’d)

What’s going on is this:

The PDE becomes a first-order ODE along each of the characteristic curves.

In order to have a unique solution, the initial condition must specify the value of u
at exactly one point on each of these characteristics.

Therefore, it seems that the curve along which the initial condition u is given must
intersect each characteristic at exactly one point.

Theorem: Given the initial-value problem

aux + buy + cu = f (x , y),

u (x , f1(x)) = f2(x),

where a, b, and c are constant, suppose that

1) fx , fy , f ′1 , and f ′2 are continuous.

2) Each characteristic of the PDE intersects the initial curve y = f1(x) exactly once.

3) No characteristic is tangent to the initial curve.

Then, the initial-value problem has a unique solution u, with the property that ux and

uy are continuous.
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1.7 The Method of Characteristics II

Can we extend the method of characteristics to deal with equations where the
coefficients are not all constant?

Example 1: Find all solutions of ux + 4xuy − u = 0. The term ux + 4xuy is the
directional derivative of u in the direction of the vector î + 4xĵ . We expect curves with

this vector as tangent vectors to be the characteristics that satisfy
dy

dx
=

4x

1
, so the

characteristics are the curves

y = 2x2 + c or 2x2 − y = constant.

Now, let
ξ = x

η = 2x2 − y
or

x = ξ

y = 2ξ2 − η.
Then

ux = uξ + 4xuη and uy = −uη

and the transformed PDE is
uξ − u = 0

with solution
u = g(η)eξ = g(2x2 − y)ex

for arbitrary function g . So the curves 2x2 − y = c are, indeed, characteristic.
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1.7 The Method of Characteristics II (cont’d)

More precisely, given the first-order linear PDE

a(x , y)ux + b(x , y)uy + c(x , y)u = f (x , y),

we define the characteristic curves to be those curves satisfying

dy

dx
=

b(x , y)

a(x , y)

or, as is traditionally written,
dx

a(x , y)
=

dy

b(x , y)
.

Definition: The characteristics or characteristic curves of the first-order linear PDE

a(x , y)ux + b(x , y)uy + c(x , y)u = f (x , y)

are those curves satisfying the ODE

dx

a(x , y)
=

dy

b(x , y)
.
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1.7 The Method of Characteristics II (cont’d)

Supposing that the ODE
dx

a(x , y)
=

dy

b(x , y)
has general solution h(x , y) = c, we make

the transformation
ξ = x

η = h(x , y).

In this case, we have
ux = uξ + uηhx

uy = uηhy

and
aux + buy = auξ + (ahx + bhy )uη.

But
dx

a
=

dy

b
⇒ h(x , y) = c

⇒ dh = 0 = hxdx + hydy = dx

(
hx + hy

dy

dx

)
= dx

(
hx + hy

b

a

)
=

dx

a
(ahx + bhy )

and we have
aux + buy = auξ,

so the PDE has been reduced to an ODE.
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1.7 The Method of Characteristics II (cont’d)

Example 2: Solve
ux + yuy = x ,

u(1, y) = cos y .

The characteristics are given by
dx

1
=

dy

y
with solution

y = cex or ye−x = c.

Then, our transformation is

ξ = x

η = ye−x
or

x = ξ

y = ηeξ

and the PDE becomes uξ = ξ with solution

u =
ξ2

2
+ g(η) =

x2

2
+ g(ye−x).

Finally,

u(1, y) = cos y =
1

2
+ g(ye−1),

and, letting z = y
e

and y = ez , we get g(z) = cos ez − 1

2
, and the unique solution is

u =
x2

2
+ cos(ye1−x)− 1

2
.
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1.8 Separation of Variables for Linear, Homogeneous PDEs

Definition: Given a PDE in u = u(x , y), we say that u is a product solution if

u(x , y) = f (x)g(y)

for functions f and g. More generally, u = u(x1, x2, . . . , xn) is a product solution of a
PDE in the n variables x1, x2, . . . , xn if

u(x1, x2, . . . , xn) = f1(x1)f2(x2) . . . fn(xn)

for functions f1, f2, . . . , fn.

Example 1: Find all product solutions of the first-order, linear, homogeneous PDE

ux + uy = 0.

We search for all solutions of the form u(x , y) = X (x)Y (y):

ux = X ′Y and uy = XY ′,

X ′Y + XY ′ = 0,

X ′

X
= −Y ′

Y
.

We have managed to separate the variable x from the variable y . We say that the

equation is separable and that we have separated the variables.
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1.8 Separation of Variables for Linear, Homogeneous PDEs (cont’d)

Example 1 (cont’d): We have a situation

f (x) = g(y)

for all values of x and y in the domain of the problem. We have

u(x , y) = X (x)Y (y) as a solution to
X ′

X
= −Y ′

Y
= λ

for some real constant λ. This equation actually is two equations:

X ′

X
= λ and

Y ′

Y
= −λ,

X ′ − λX = 0 and Y ′ + λY = 0.

The product solutions are

X (x) = eλx and Y (y) = e−λy

or
u(x , y) = eλ(x−y)

for any real constant λ. Further, any linear combination of these solutions is a solution.
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1.8 Separation of Variables for Linear, Homogeneous PDEs (cont’d)

Note: we shall find only certain values of λ that will lead to nontrivial (other than the
zero-function) solutions of the problem.

Example 2: Find all product solutions of the heat equation ut = uxx .

u(x , t) = X (x)T (t) ⇒ X (x)T ′(t) = X ′′(x)T (t),

T ′

T
=

X ′′

X
= −λ,

X
′′

+ λX = 0 and T ′ + λT = 0.

We must consider three cases:

Case 1: λ > 0 ⇒ X = c cos
√
λx + d sin

√
λx , T = e−λt

u = e−λt
[
c cos

√
λx + d sin

√
λx
]

Case 2: λ = 0 ⇒ X = cx + d , T = 1, u = cx + d

Case 3: λ < 0 ⇒ X = ce
√
−λx + de−

√
−λx , T = e−λt

u = e−λt
[
ce
√
−λx + de−

√
−λx
]

In each case, c and d are arbitrary constants.

Again, any linear combination of solutions is a solution.
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1.9 Eigenvalue Problems

Note:

We solve the X -ODE for each real number λ with infinitely many solutions.

We need to find which of these solutions “survive” the boundary conditions.

For “most” real numbers λ, the only solution that also satisfies the boundary
conditions is the zero-solution, X (x) ≡ 0.

Thus, we need to identify those values of λ for which the X -system has nontrivial
solutions.

These values of λ are called eigenvalues of the X -system, and the corresponding
nontrivial solutions are the eigenfunctions associated with λ. The system itself is an
example of an ODE eigenvalue problem.

Example 1: Find all eigenvalues and eigenfunctions of the eigenvalue problem

y ′′ + λy = 0,

y ′(0) = y ′(3) = 0.

Case 1: λ < 0, λ = −k2, k > 0

y = c1 cosh kx + c2 sinh kx , ⇒ y ′ = c1k sinh kx + c2k cosh kx ,

y ′(0) = c2k = 0 ⇒ c2 = 0, y ′(3) = c1k sinh 3k = 0 ⇒ c1 = 0,

so there are no negative eigenvalues.
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1.9 Eigenvalue Problems (cont’d)

Case 2: λ = 0
y = c1x + c2 ⇒ y ′ = c1,

y ′(0) = y ′(3) = c1 = 0.

Here, y = c2 survives both boundary conditions, so λ0 = 0 is an eigenvalue with
eigenfunction y0 = 1.

Case 3: λ > 0, λ = k2, k > 0

y = c1 cos kx + c2 sin kx ⇒ y ′ = −c1k sin kx + c2k cos kx ,

y ′(0) = c2k = 0 ⇒ c2 = 0,

y ′(3) = −c1k sin 3k = 0 ⇒ c1 = 0

unless

sin 3k = 0, that is, 3k = π, 2π, 3π, . . . or k =
nπ

3
, n = 1, 2, 3, . . . .

Therefore, we have eigenvalues

λn =
n2π2

9
, n = 1, 2, 3, . . .

with associated eigenfunctions

yn = cos
nπx

3
, n = 1, 2, 3, . . . .
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1.9 Eigenvalue Problems (cont’d)

Example 2: Do the same for

y ′′ + λy = 0,

y(0) = y(1) + y ′(1) = 0.

Case 1: λ < 0, λ = −k2, k > 0

The problem has no negative eigenvalues.

Case 2: λ = 0 is not an eigenvalue.

Case 3: λ > 0, λ = k2, k > 0

y = c1 cos kx + c2 sin kx ⇒ y ′ = −c1k sin kx + c2k cos kx .

Then,
y(0) = c1 = 0

y(1) + y ′(1) = c2(sin k + k cos k).

This system has only the solution c1 = c2 = 0 unless k is such that

sin k + k cos k = 0.

Therefore, the eigenvalues correspond to those values of k satisfying

−k = tan k.
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1.9 Eigenvalue Problems (cont’d)

How do we solve for k? We don’t – because we can’t! However, we can show that there
are infinitely many such values of k for k > 0:

/2 3 /2 5 /2 7 /2
-10

-5

0

5

10

M: Chapter 1 graph intersection.m

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

M: Chapter 1 bvp4c eigenproblem.m

Therefore, the eigenvalues are those λn > 0 satisfying −
√
λn = tan

√
λn, with associated

eigenfunctions yn = sin
(√
λnx
)
.

MATLAB’s routine bvp4c: refer to Chapter 3 and Chapter 1 bvp4c eigenproblem.m
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