

Topics in Numerical and Computational Mathematics

Computational Optimization:

Success in Practice
Chapter 3: Generalized Optimization
Framework

© 2023 by Vladislav Bukshtynov VladislavBukshtynov@yahoo.com

CRC Press https://www.crcpress.com/

Example 1.3 (revisited): Least-Squares Data Fitting

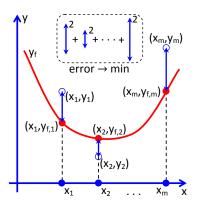
Input Data: m data points

$$(x_i, y_i), \quad i = 1, \ldots, m$$

Equation to Model Fitting:

$$y_f(x) = a_1 + a_2 x + a_3 x^2,$$

where a_1 , a_2 , a_3 are parameters to identify while pursuing the best data fit in the "least-squares" sense



General Approach: consider constrained optimization problem

$$\min_{\mathbf{a} \in \mathbb{R}^3} \sum_{i=1}^m (y_i - y_{f,i})^2$$

s.t. $y_{f,i} = a_1 + a_2 x_i + a_3 x_i^2, \quad i = 1, \dots, m$

Example 1.3 (revisited): Least-Squares Data Fitting (cont'd)

Computational Approach: consider residual vector for m "pieces" of data

$$\mathbf{r} = \mathbf{y} - A \mathbf{a} = \begin{bmatrix} y_1 - (a_1 + a_2 x_1 + a_3 x_1^2) \\ y_2 - (a_1 + a_2 x_2 + a_3 x_2^2) \\ \vdots \\ y_m - (a_1 + a_2 x_m + a_3 x_m^2) \end{bmatrix}, \quad A = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_m & x_m^2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

and solve the problem in the form of unconstrained optimization problem

$$\min_{\mathbf{a}\in\mathbb{R}^3} f(\mathbf{a})$$

with objective function

$$f(\mathbf{a}) = ||\mathbf{r}||^2 = r_1^2 + r_2^2 + \dots + r_m^2 = \sum_{i=1}^m (y_i - (a_1 + a_2x_i + a_3x_i^2))^2,$$

where $\mathbf{a} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}^T$ is a control vector.

Case 1: m = 3, $y_1 \neq y_2 \neq y_3$ – unique solution could be found exactly (see Example 1.2)

Case 2: m = 1, 2 – infinitely many solutions

Case 3: m > 3 – uniqueness of the solution depends on data

Parameter Identification for Least-Squares Data Fitting

Objective function:

$$f(\mathbf{a}) = \sum_{i=1}^{m} \left(y_i - \left(a_1 + a_2 x_i + a_3 x_i^2 \right) \right)^2$$

Gradient of the objective function w.r.t. control vector a

$$\frac{\partial f}{\partial \mathbf{a}} = \mathbf{\nabla}_{\mathbf{a}} f(\mathbf{a}) = \begin{bmatrix} \frac{\partial f}{\partial a_1} \\ \frac{\partial f}{\partial a_2} \\ \frac{\partial f}{\partial a_3} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m 2 \left(y_i - \left(a_1 + a_2 x_i + a_3 x_i^2 \right) \right) \cdot \left(-1 \right) \\ \sum_{i=1}^m 2 \left(y_i - \left(a_1 + a_2 x_i + a_3 x_i^2 \right) \right) \cdot \left(-x_i \right) \\ \sum_{i=1}^m 2 \left(y_i - \left(a_1 + a_2 x_i + a_3 x_i^2 \right) \right) \cdot \left(-x_i^2 \right) \end{bmatrix}$$

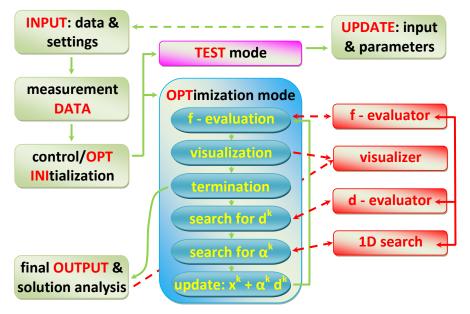
Find optimal solution a* by using

gradient-based (steepest descent) iterative approach

$$\mathbf{a}^{k+1} = \mathbf{a}^k + \alpha^k \cdot \mathbf{d}^k, \qquad \mathbf{d}^k = -\nabla_{\mathbf{a}} f(\mathbf{a}^k)$$

- \bullet optimal step size α^k computed by one of the discussed 1D minimization methods
- termination $\left| \frac{f(\mathbf{a}^{k+1}) f(\mathbf{a}^k)}{f(\mathbf{a}^k)} \right| < \epsilon$ (relative decrease of objective)

Computational Elements of the Generalized Optimization Framework



Choice of Proper Software

Main (core) software:

- ideally is self-contained: specialized software to solve a particular problem
- difficult to apply to specific needs or modify
- best idea: used as a communication and data processing framework

f-evaluator:

- to evaluate objective function(s) f(x)
- may require to solve (systems of) (non)linear equation(s), ODE(s), PDE(s)

d-evaluator:

- to find search direction(s) d
- may require to solve (systems of) (non)linear equation(s), ODE(s), PDE(s)
- may require to communicate effectively with f-evaluator

Choice of Proper Software (cont'd)

Solver for (systems of) (non)linear equation(s), ODE(s), PDE(s):

- very problem dependent
- trade-off: fast vs. accurate

1D search:

- ullet to find optimal step size lpha
- depends on the nature of the problem (differentiability, convexity, constraints, etc.)
- may require to communicate effectively with f-evaluator and d-evaluator

Visualizer:

- to perform analysis of input data (a priori) and obtained solutions (a posteriori)
- to control the progress of optimization algorithm
- ideally should not slow down or interrupt main optimization process via fast and easy access to stored intermediate data

Examples of core software platforms:

- ullet MATLAB + access to parallel computing, math, statistics and optimization toolboxes
- C++-based scientific environments with added libraries for linear algebra, solving PDEs, optimization, etc., e.g. FreeFEM
- other solvers available in common formats: MATLAB, C++, Python[®], Fortran. etc.

Example 1.3: MATLAB-based Optimization Framework

```
% Chapter_3_data_fit_by_gradient.m
close all: clc: clear:
                                                % setting INPUT parameters
params;
data = load(dataFile);
                                                % loading DATA
initialize;
                                                % INItialization
while(k < kMax+1) % termination condition #2 % main OPTimization loop
 obj = [obj f(a, data)];
                                                % f-evaluation
 visualize:
                                                % visualization
 if k > 0 % termination condition #1
                                                % checking optimality (by tolerance)
   err = abs(obj(end-1)-obj(end))/obj(end-1);
   if (err < epsilon)
     break:
   end
 end
 d = -grad(a,data);
                                                % search for d: computing gradient
 alpha = alphaConst;
                                                % search for alpha
 a = a + alpha*d;
                                                % update for controls
 k = k + 1:
                                                % iteration counter increment
```

Example 1.3: Choosing and Adjusting Optimization Algorithms

Computational elements: Chapter_3_data_fit_by_gradient.m

main OPT-part: written manually

f-evaluator: m-function, analytically defined function $f(\mathbf{a})$

d-evaluator: m-function, analytically defined gradient $\nabla_a f(a)$

1D search for α : constant value, $\alpha = const$

dien in an obligation rates, as constant

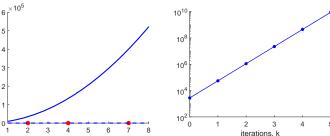
visualizer: plain m-code [MATLAB]

Parameters:

• initial run: set $\alpha = 10^{-3}$ and $\mathbf{a}^0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ (dashed blue line)

• termination #1: $\left| \frac{f(\mathbf{a}^{k+1}) - f(\mathbf{a}^k)}{f(\mathbf{a}^k)} \right| < \epsilon = 10^{-6}$

• termination #2: $k_{max} = 5$



Q: Why does it diverge?

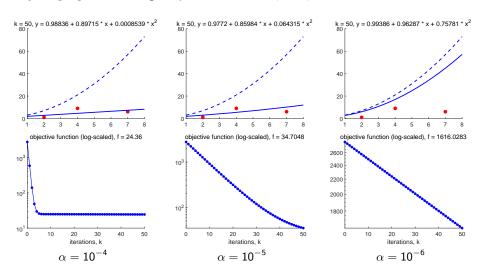
[MATLAB]

[MATLAB]

[MATLAB]

Example 1.3: Choosing and Adjusting Optimization Algorithms (cont'd)

Adjusting algorithm: change step size to $\alpha = 10^{-4}, 10^{-5}, 10^{-6}$ & $k_{max} = 50$

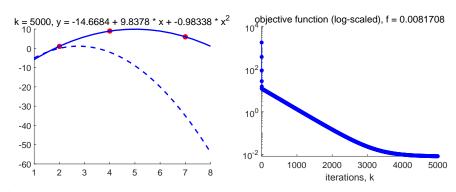


Q: Now it converges, what about performance?

Example 1.3: Choosing and Adjusting Optimization Algorithms (cont'd)

Adjusting algorithm:

- Fix step size to $\alpha = 10^{-4}$ and $k_{max} = 5000$
- ullet Make initial guess closer to $\mathbf{a}^* = \begin{bmatrix} -15 \ 10 \ -1 \end{bmatrix}^T$, e.g. $\mathbf{a}^0 = \begin{bmatrix} -14 \ 11 \ -2 \end{bmatrix}^T$
- Explore the results (shown below)



Q: What could be done to check and increase further the performance?

Visualization and Analysis of Obtained Solutions

Data to be visualized (depending on problem):

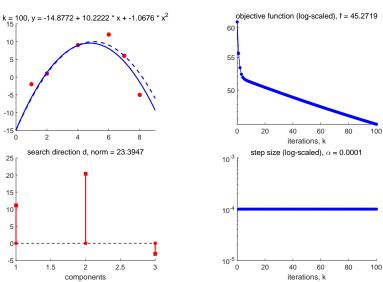
- Optimization progress via objective function
 - measurement data (if compared with the modeled data)
 - separate parts of objective (how closely data is fitted)
 - ightharpoonup entire objective vs. iteration number k (to check monotonicity)
- Optimization progress via optimization/control variables
 - "true" solution (used to generate measurements, then forgotten)
 - current solution
 - some measures how close they are (monotonicity may not be expected!)
- Other optimization attributes:
 - gradients
 - state variables (if different from control variables)
 - dynamic parameters (optimal step size, weighting coefficients, etc.)
 - controlling other techniques (regularization, preconditioning, etc.)

Before your big project starts, think how to:

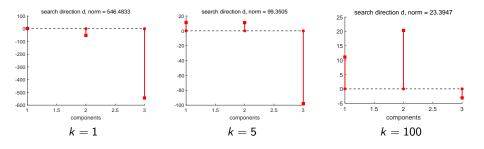
- save intermediate/final data instead of graphical images
- keep data in easily convertible formats, e.g. dat or txt files
- convert your data into high resolution images or send to external software

Visualization and Analysis of Obtained Solutions: Example 1.3 (modified)

Modification: more data (6 points), initial guess \mathbf{a}^0 set to exact solution of original Example 1.3 (with 3 points).

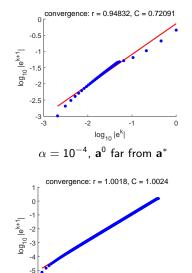


Analysis of Gradient Structure: Example 1.3 (modified)

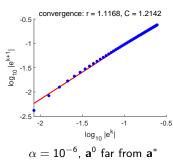


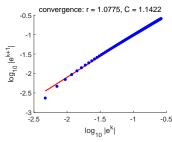
- visualized **d**-components: pattern to update controls
- ullet actual updates: **d**-components scaled by step size lpha
- convergence: diminishing range of d-component amplitudes
- termination condition: norm $\|\mathbf{d}^k\| = \|\nabla_{\mathbf{a}} f^k(\mathbf{a})\| = 0$ (also 1-order optimality condition, Chapter 5)

Analysis of Computational Convergence: Example 1.3 (original & modified)



-5 -4 -3 -2 -1 0 $\log_{10}|\mathbf{e^k}|$ $\alpha = 10^{-4}, \ \mathbf{a}^0 \ \text{close to } \mathbf{a}^*$





$$\alpha = 10^{-4}$$
, $m = 6$ case

Analysis of Computational Convergence (cont'd)

Review the concept applied to 1D optimization problems

$$|e^{k+1}| = C|e^k|^r \quad \Rightarrow \quad \log_{10}|e^{k+1}| = \log_{10}C + r \cdot \log_{10}|e^k|.$$

MATLAB's polyfit function to approximate $b = \log_{10} C$ and r as coefficients in

$$y = b + rx$$
, $x = \log_{10} |e^{k}|$, $y = \log_{10} |e^{k+1}|$.

• Now, optimization in 3D ($\mathbf{a} \in \mathbb{R}^3$): back to generalized form using $\|\cdot\|_2$ (Euclidean distance in \mathbb{R}^n) norm and $\mathbf{a}^* = \mathbf{a}^{last}$ concept

$$\lim_{k \to \infty} \frac{\|\mathbf{e}^{k+1}\|}{\|\mathbf{e}^k\|^r} = \lim_{k \to \infty} \frac{\|\mathbf{a}^{k+1} - \mathbf{a}^*\|_2}{\|\mathbf{a}^k - \mathbf{a}^*\|_2^r} = C, \quad C < \infty.$$

- Convergence: linear due to steepest-descent (cannot move it beyond its limits)
- Faster convergence: consider two options
 - investing further in the optimal step size search, or
 - changing the method itself (method's order).

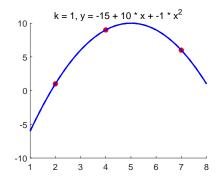
Q: What would be the best option for our current Example 1.3? For other problems?

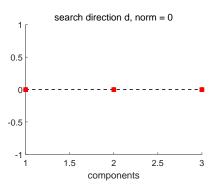
Testing and Dealing with Problems (Debugging)

f-evaluator

- Test case #1: for known \mathbf{x}^* and $f^* = f(\mathbf{x}^*)$, run with $\mathbf{x} = \mathbf{x}^*$ to check if $f = f^*$
- Test case #2: if $f \neq f^*$, check your ability to control $|f f^*| \to 0$ by tuning solver parameters (refining mesh, applying higher-order schemes, etc.)
- Test case #3: run other trustful and commonly used benchmark models and compare outcomes with published results

Test case #1: f-evaluator with $\mathbf{a}^0 = \mathbf{a}^*$





Testing and Dealing with Problems (Debugging, cont'd)

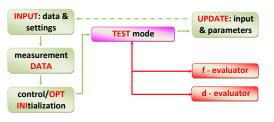
d-evaluator (problem- and method-dependent)

 Test case for gradient-based method: run "kappa-test" to check gradient is accurate and consistent with its FD approximation (see next slide for details)

main OPT part

- Test every component separately: "change one part at a time"
- Test communication within the entire framework (variables, dimensions of vectors/matrices, names, solution files, etc.)
- Tuning Test: for the same problem, change one parameter/technique at a time (check sensitivity of performance to this particular change)
- Robustness Test: for fixed set of parameters/techniques run framework for the same problem varying initial data; then explore the results and repeat tuning (if necessary)
- Applicability Test: apply framework to problems at different levels of complexity (low, moderate, high)

TEST Mode for Gradient-based Framework



1D case implementation (by FD-1):

$$f'(x) pprox rac{f(x + \Delta x) - f(x)}{\Delta x},$$
 $\kappa = rac{f(x + \epsilon \Delta x) - f(x)}{\epsilon \Delta x} o 1$

if Δx is finite (small) and $\epsilon \to 0$

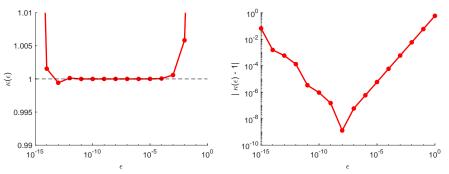
Extension for multidimensional case, $\mathbf{x} \in \mathbb{R}^n$, "kappa-test":

$$\kappa(\epsilon) = \frac{f(\mathbf{x} + \epsilon \, \delta \mathbf{x}) - f(\mathbf{x})}{\epsilon \, \langle \nabla_{\mathbf{x}} f(\mathbf{x}), \, \delta \mathbf{x} \rangle}, \quad \delta \mathbf{x} = [\Delta x_1 \, \Delta x_2 \, \dots \, \Delta x_n]^T, \quad \epsilon \to 0$$

- "cheap test": requires 2 f-evaluations for fixed $\delta \mathbf{x}$, e.g., $\delta \mathbf{x} = \mathbf{x}$, compute $\kappa(\epsilon)$ for a range of ϵ , e.g., $\epsilon = 10^{-12} \div 10^2$
- "expensive test": requires n+1 f-evaluations for fixed ϵ , e.g., $\epsilon=10^{-6}$, perform kappa-test changing $\delta \mathbf{x}$: $[x_1\ 0\ 0\ \dots\ 0]^T$, $[0\ x_2\ 0\ \dots\ 0]^T$, $[0\ 0\ 0\ \dots\ x_n]^T$ to check sensitivity for every component of \mathbf{x}

TEST Mode for Gradient-based Framework (cont'd)

Example 1.3: "cheap test" for gradient (Chapter_3_data_fit_by_gradient_test.m)

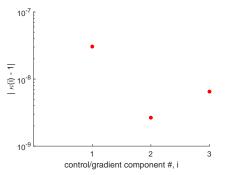


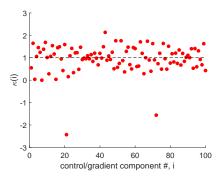
- ullet correctness of gradient: range of ϵ spans 9-10 orders of magnitude
- ullet quantity $\log_{10} |\kappa(\epsilon)-1|$ shows how many significant digits of accuracy are captured in gradient evaluation
- well-known effects: $\kappa(\epsilon)$ deviates from the unity:
 - ightharpoonup for very small values of ϵ due to subtractive cancelation (roundoff) errors
 - for large values of ϵ due to truncation errors

TEST Mode for Gradient-based Framework (cont'd)

Example 1.3: "expensive test"
Chapter_3_data_fit_by_gradient_test.m

Another Example: typical "expensive test" for problem with $\mathbf{x} \in \mathbb{R}^n, n=100$





- correctness of i-th gradient component: component-wise sensitivity analysis (accuracy)
- easy problem identification: accuracy of gradient vs. sensitivity by single controls
- both tests, "cheap" and "expensive", may be repeated throughout the optimization process to control error/loss of sensitivity (to avoid propagation)

Example 1.3: Improving Performance – Step Size α

Computational algorithm: (updated) Chapter_3_data_fit_by_gradient_ver_2.m

Implementation of Golden Section Search (line minimization search):

ullet find optimal step size $lpha^k$ at every optimization iteration k by solving 1D minimization problem

$$\alpha^k = \underset{\alpha>0}{\operatorname{argmin}} \ f\left(\mathbf{a}^k + \alpha \cdot \mathbf{d}^k\right)$$

• could also use: Bisection, Brute-Force, Monte Carlo methods, etc.

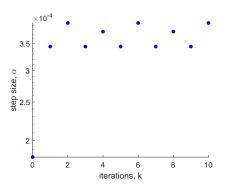
Parameters for Golden Section Search:

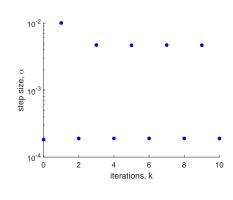
- search interval [a, b]: a = 0, b = 0.01
- termination: $\epsilon_{\alpha}=10^{-2},10^{-3}$ (why diverging?), 10^{-4} (next slide figure), 10^{-6} (next two slides figures)

Example 1.3: Improving Performance – Step Size α (cont'd)

• step size α^k via GS: $\epsilon_{\alpha} = 10^{-4}$

• step size α^k via GS: $\epsilon_{\alpha}=10^{-6}$



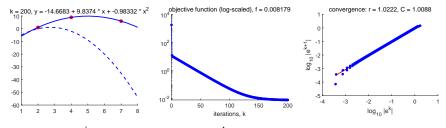


Tuning-up GS method:

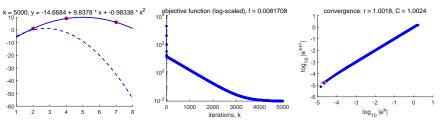
- search interval [a, b]: are bounds a and b appropriate?
- ϵ_{α} : best alignment with the gradient-based search
- $\epsilon_{\alpha} = 10^{-4}, 10^{-6}$: 11 vs. 21 *f*-evaluations (per *k*th iteration)
- \bullet $\alpha^k \in [0, 10^{-2}]$ vs. $\alpha^k = const = 10^{-4}$ (next slide)

Example 1.3: Comparing Performance – Step Size α

• step size α^k : Golden Section Search ($a=0,\ b=0.01,\ \epsilon_\alpha=10^{-6}$)



• step size α^k : constant value $\alpha = 10^{-4}$ (see slides 11 & 15)



Q: How to improve further the performance of GS method? "Flexibility" for a and b?

Example 1.3: Improving Performance - Newton's Method

Computational algorithm: (updated) Chapter_3_data_fit_by_gradient_ver_3.m

main OPT-part: written manually [MATLAB] f-evaluator: m-function, analytically defined function $f(\mathbf{a})$ [MATLAB] d-evaluator: m-function, analytically defined $\nabla_{\mathbf{a}} f(\mathbf{a}) \& \left[\nabla_{\mathbf{a}}^2 f(\mathbf{a}) \right]^{-1}$ [MATLAB] 1D search for α : not required visualizer: plain m-code [MATLAB]

Implementation of 2-order Newton's method for search direction:

• evaluate gradient $\nabla_{\mathbf{a}} f(\mathbf{a}^k)$ (slide 4) and Hessian $\nabla_{\mathbf{a}}^2 f(\mathbf{a}^k)$

$$\boldsymbol{\nabla}_{\mathbf{a}}^{2}f(\mathbf{a}) = \begin{bmatrix} \frac{\partial^{2}f}{\partial a_{1} \partial a_{1}} & \frac{\partial^{2}f}{\partial a_{1} \partial a_{2}} & \frac{\partial^{2}f}{\partial a_{1} \partial a_{3}} \\ \frac{\partial^{2}f}{\partial a_{2} \partial a_{1}} & \frac{\partial^{2}f}{\partial a_{2} \partial a_{2}} & \frac{\partial^{2}f}{\partial a_{2} \partial a_{3}} \\ \frac{\partial^{2}f}{\partial a_{3} \partial a_{1}} & \frac{\partial^{2}f}{\partial a_{3} \partial a_{2}} & \frac{\partial^{2}f}{\partial a_{3} \partial a_{3}} \end{bmatrix} = 2 \cdot \begin{bmatrix} \boldsymbol{m} & \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} \\ \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} \\ \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} & \sum_{i=1}^{m} x_{i}^{4} \end{bmatrix}$$

• find search direction \mathbf{d}^k at every optimization iteration k by

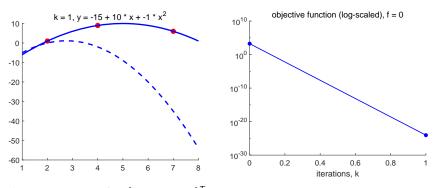
$$\mathbf{d}^k = -\left[\mathbf{\nabla}_{\mathbf{a}}^2 f(\mathbf{a}^k)\right]^{-1} \mathbf{\nabla} f(\mathbf{a}^k)$$

• in general method works well with step size $\alpha^k = 1$

Example 1.3: Improving Performance - Newton's Method (cont'd)

Parameters for Newton's method (main OPT-part):

- initial run: set "no update" for α ($\alpha^k = 1$) and $\mathbf{a}^0 = \begin{bmatrix} -14 & 11 & -2 \end{bmatrix}^T$
- termination #1: $\left| \frac{f(\mathbf{a}^{k+1}) f(\mathbf{a}^k)}{f(\mathbf{a}^k)} \right| < \epsilon_1 = 10^{-6}$ [fails if $f(\mathbf{a}^{k+1}) = f(\mathbf{a}^k) = 0$]
- \bullet termination #2: $\frac{\|\mathbf{a}^{k+1} \mathbf{a}^k\|_2}{\|\mathbf{a}^k\|_2} < \epsilon_2 = 10^{-6}$
- termination #3: $k_{max} = 100$

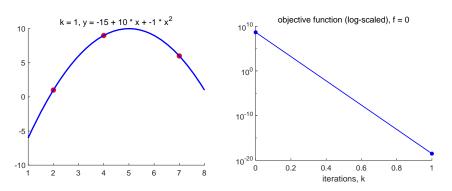


Q: Optimal solution $\mathbf{a}^* = \begin{bmatrix} -15 & 10 & -1 \end{bmatrix}^T$ is found in one iteration. Why?

Example 1.3: Improving Performance – Newton's Method (cont'd)

Exploring Newton's method:

- Update α using GS method with $a=0,\ b=10,\ \epsilon_{\alpha}=10^{-6}$. Check that α returns optimal value close to 1 (e.g., 1.000000052835619) for the same settings.
- Check convergence to \mathbf{a}^* from $\mathbf{a}^0 = [-100 \ 1000 \ 250]^T$.

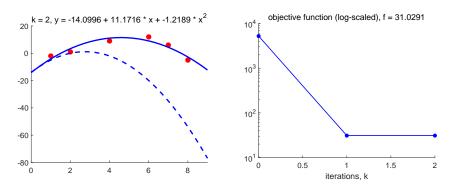


Q: Explain convergence in 1 iteration.

Example 1.3: Improving Performance – Newton's Method (cont'd)

Exploring Newton's method:

- Check convergence in 1-2 iterations for different data, e.g., m = 6 (data_6pt.dat).
- Make general conclusion on Newton's method applied to quadratic problems.



Q: How will convergence change if gradient $\nabla_{\mathbf{a}} f(\mathbf{a}^k)$ and Hessian $\nabla_{\mathbf{a}}^2 f(\mathbf{a}^k)$ are computed for quadratic/non-quadratic problems using any FD approximations?

Generalized Optimization Framework: Communication

Framework "parameterization"

- modes: OPT, TEST
- methods: SD, NEWTON, ..., future and your own methods
- ullet α -search: const, GS, ..., other algorithms
- other parts: main solver, regularization, etc.

```
INPUT: data & settings

the settings of the setting of the settings of the set
```

```
% Chapter_3_data_fit_by_gradient_ver_final.m
close all: clc: clear: tic:
params_ver_final;
                                                 % setting INPUT parameters
data = load(dataFile);
                                                 % loading DATA
initialize ver final:
                                                 % INItialization
                                                 % choosing mode OPT/TEST
if strcmp (mode, 'OPT')
                                                 % based on Chapter_3_data_fit_by_gradient_ver_3.m
 mode_OPT;
elseif strcmp(mode, 'TEST')
 mode_TEST:
                                                 % based on Chapter_3_data_fit_by_gradient_test.m
else
 disp(['error: Unknown mode ' mode ' is chosen!']); return;
end
% final output
```

fprintf(['We are fully done! CPU elapsed time = ' num2str(toc) 's\n\n']);

Homework for Chapter 3

- Run MATLAB code Chapter_3_data_fit_by_gradient.m to experiment with m > 3 (modified Example 1.3 using steepest descent & constant step size α) for different parameters α, k_{max}, and initial guess a⁰. Check the performance based on the analysis of the visualized solutions: solution curves, objective function, search direction (gradient structure), parameters for the computational convergence.
- Modify MATLAB code Chapter_3_data_fit_by_gradient.m to use any FD approximations of $\nabla_{\bf a} f({\bf a}^k)$ for the SD method. For constant step size α , check the convergence and approximate convergence parameters r and C for both cases: analytically defined and FD-approximated gradients $\nabla_{\bf a} f({\bf a}^k)$. Compare the results and make a conclusion.
- Modify MATLAB code Chapter_3_data_fit_by_gradient_ver_2.m and repeat the previous experiments (problem 2) now with optimal step size α chosen by using the GS method.

Homework for Chapter 3 (cont'd)

- Modify MATLAB code Chapter_3_data_fit_by_gradient_ver_3.m and apply Newton's method to check the convergence and approximate convergence parameters r and C for both cases: analytically defined and FD-approximated gradients $\nabla_{\bf a} f({\bf a}^k)$ and Hessians $\nabla_{\bf a}^2 f({\bf a}^k)$. Compare the results and conclude on the convergence when using 1-order, 2-order, mixed-order (e.g., 2-order for gradient and 1-order for Hessian) approximations.
- Explore the structure of the upgraded MATLAB code Chapter_3_data_fit_by_gradient_ver_final.m to incorporate computations for FD-approximated gradients $\nabla_a f(\mathbf{a}^k)$ and Hessians $\nabla_a^2 f(\mathbf{a}^k)$. Discuss the proper communication concept applied for using FD approximations throughout the entire framework.
- In Chapter_3_data_fit_by_gradient_ver_final.m, upgrade the procedure for finding optimal step size α^k by solving 1D minimization problem

$$\alpha^k = \underset{\alpha > 0}{\operatorname{argmin}} \ f\left(\mathbf{a}^k + \alpha \cdot \mathbf{d}^k\right)$$

using the bisection, brute-force, and Monte Carlo methods.

Where to Read More for Chapter 3

- Bukshtynov (2023): Chapter 3
- Press (2007): Chapter 9 (Root Finding and Nonlinear Sets of Equations),
 Chapter 10 (Minimization or Maximization of Functions),
 Chapter 15 (Modeling of Data)

MATLAB codes for Chapter 3

- Chapter_3_data_fit_by_gradient.m
- Chapter_3_data_fit_by_gradient_test.m
- Chapter_3_data_fit_by_gradient_ver_2.m
- Chapter_3_data_fit_by_gradient_ver_3.m
- Chapter_3_data_fit_by_gradient_ver_final.m
- params.m
- initialize.m
- visualize.m
- fn_eval_f.m
- fn_eval_grad.m
- fn_convergence_sol_norm.m
- data_main.dat

- data_6pt.dat
- wappa_test.m
- golden_section_search.m
- params_ver_2.m
- initialize ver 2.m
- params_ver_3.m
- initialize_ver_3.m
- fn_eval_hess.m
- params_ver_final.m
- initialize_ver_final.m
- mode_OPT.m
- mode_TEST.m