@ Topics in Numerical
and Computational Mathematics

CRC PRESS

Taylor & Francis Group

Computational Optimization:
Success in Practice
Chapter 3: Generalized Optimization
Framework

(© 2023 by Vladislav Bukshtynov
VladislavBukshtynov@yahoo.com

CRC Press

https://www.crcpress.com/

VladislavBukshtynov@yahoo.com
https://www.crcpress.com/

Example 1.3 (revisited): Least-Squares Data Fitting

Input Data: m data points (Xm,Ym)

142 2 5
;+1+-+:

(xi,yi), i=1....m Terror Smin

Equation to Model Fitting:

(X1,V1) (XmIYf,m)
yi(x) = a1 + aox + a3x,

(Xz,Vf,z)
where ai, a», az are parameters to

1
1
identify while pursuing the best data i
fit in the “least-squares” sense !

General Approach: consider constrained optimization problem

min > "(yi — yr.i)’
i=1

acR3

2 .
s.t. yri=ar+ax+azx;, i=1,...,m

2/32

Example 1.3 (revisited): Least-Squares Data Fitting (cont'd)

Computational Approach: consider residual vector for m “pieces” of data

y1i— (a1 4 axx1 + a3X12) 1 x X
2 2

r —= y—Aa = y2 (31 +ae+ 33X2) s A= 1 X2 X2 s y =
Y — (a1 + aoXm + a3x3) I Xm X

and solve the problem in the form of unconstrained optimization problem

min f(a
min f(a)
with objective function

m

2
f@ =’ =rRn+rB+ - +rm=>Y_ (y, — (& +azXf+asx?)) 7

i=1

where a = [a; a2 a3]” is a control vector.

Vi
Y2

Ym

Case 1: m =3, y1 # y» # y3 — unique solution could be found exactly (see Example 1.2)

Case 2. m = 1,2 — infinitely many solutions

Case 3: m > 3 — uniqueness of the solution depends on data

3/32

Parameter Identification for Least-Squares Data Fitting

Objective function:

m
2
f(a) = Z (yf — (a1 + axxi + 33Xi2))
i=1
Gradient of the objective function w.r.t. control vector a

of % >r.2 (y,- — (a1 + axxi + a3x,-2)) -(-1)
% = Vaf(a) = gT; = 27;1 2 (y,' — (al + axxi + a3x,-2)) . (—Xi)
o 12 (vi = (a1 + axi + asx?)) - (—x7)

Find optimal solution a* by using
@ gradient-based (steepest descent) iterative approach
a1l = ok 4 ok . d¥, d" = —V.f(a")
@ optimal step size a* computed by one of the discussed 1D minimization methods

f-(ak+1) _ f(ak)

@ termination @) < € (relative decrease of objective)

4/32

Computational Elements of the Generalized Optimization Framework

INPUT: data &
settings

)

measurement
DATA

|

control/OPT
INItialization

_____________ UPDATE: inputJ

_}L TESTm Oﬁ . — & parameters

OPTimization

> - evaluato

f - evaluation

-

final OUTPUT &
solution analysis ~

P d
7’
™ termination
7 d - evaluator <

search for d*
search for a

update: X +a'd

5/32

Choice of Proper Software

Main (core) software: OPTimizatiori f - evaluator

@ ideally is self-contained: specialized software
to solve a particular problem

Main software

@ difficult to apply to specific needs or modify Lol

@ best idea: used as a communication and data
processing framework

f-evaluator:
@ to evaluate objective function(s) f(x)

@ may require to solve (systems of) (non)linear equation(s), ODE(s), PDE(s)

d-evaluator:
@ to find search direction(s) d
@ may require to solve (systems of) (non)linear equation(s), ODE(s), PDE(s)

@ may require to communicate effectively with f-evaluator

6/32

Choice of Proper Software (cont'd)

Solver for (systems of) (non)linear equation(s), ODE(s), PDE(s):
@ very problem dependent
@ trade-off: fast vs. accurate

1D search:
@ to find optimal step size «
@ depends on the nature of the problem (differentiability, convexity, constraints, etc.)
@ may require to communicate effectively with f-evaluator and d-evaluator
Visualizer:
@ to perform analysis of input data (a priori) and obtained solutions (a posteriori)

@ to control the progress of optimization algorithm

@ ideally should not slow down or interrupt main optimization process via fast and

easy access to stored intermediate data

Examples of core software platforms:

@ MATLAB + access to parallel computing, math, statistics and optimization toolboxes

@ C++-based scientific environments with added libraries for linear algebra, solving
PDEs, optimization, etc., e.g. FreeFEM

@ other solvers available in common formats: MATLAB, C++, Python®, Fortran, etc.
7/32

Example 1.3: MATLAB-based Optimization Framework

o

% Chapter_.3.data-fit.by-gradient.m

close all; clc; clear;

o

params; setting INPUT parameters

o0

data = load(dataFile); loading DATA

o0

initialize; INItialization

o

while(k < kMax+l) % termination condition #2 main OPTimization loop

obj = [obj f(a, data)]l;

o

f-evaluation

o

visualize; visualization

o

if k>0 % termination condition #1
err = abs (obj(end-1)-obj(end))/obj(end-1);
if (err < epsilon)

break;
end

end

checking optimality (by tolerance)

o0

d = -grad(a,data); search for d: computing gradient

o0

alpha = alphaConst; search for alpha

o

a = a + alphaxd; update for controls

k =%k + 1;

o

iteration counter increment

8/32

Example 1.3: Choosing and Adjusting Optimization Algorithms

Computational elements: Chapter_3_data_fit_by_gradient.m

main OPT-part: written manually

[MATLAB]

f-evaluator: m-function, analytically defined function f(a) [MATLAB]
d-evaluator: m-function, analytically defined gradient Vaf(a) [MATLAB]

1D search for a: constant value, o = const

visualizer: plain m-code
Parameters:

[MATLAB]

@ initial run: set @ = 1072 and a® = [1 1 1] (dashed blue line)

. N k+1y_ k _
@ termination #1: % <e=10"°
@ termination #2: kmax =5
6><105 1010
5
108
4
3 10°
2 10*
1
10?

(g

1 2 3 4 5 6 7 8

Q: Why does it diverge?

2 3 4 5
iterations, k

9/32

Example 1.3: Choosing and Adjusting Optimization Algorithms (cont'd)
Adjusting algorithm: change step size to o = 107%,107°,107°% & Kkpmax = 50

k §050. y=0.98836 + 0.89715 * x + 0.0008539 * x* lég 50,y = 0.9772 + 0.85984 * x + 0.064315 * x? lég 50, y = 0.99386 + 0.96287 * x + 0.75781 * x?

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
objective function (log-scaled), f = 24.36 objective function (log-scaled), f = 34.7048 objective function (log-scaled), f = 1616.0283
2600
10° 3
10 2400
2200
107 2000
2
10 1800
10t
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iterations, k iterations, k iterations, k
—4 -5 —6
a=10 a=10 a=10

Q: Now it converges, what about performance?

10/32

Example 1.3: Choosing and Adjusting Optimization Algorithms (cont'd)

Adjusting algorithm:
@ Fix step size to a = 107" and kpax = 5000
@ Make initial guess closer to a* = [~15 10 —1]7, e.g. a° =[-14 11 —2]"

@ Explore the results (shown below)

k = 5000, y = -14.6684 + 9.8378 * X + -0.98338 * x° gbjective function (log-scaled), f = 0.0081708
w7 107

0 -~
~ ~
~
-10 S~ 102
~
20 N
N

-30 *\ 0

N 10°
-40 \

\
-50 \\
1072+

-60 0 1000 2000 3000 4000 5000

1 2 3 4 5 6 7 8 iterations, k

Q: What could be done to check and increase further the performance?

11/32

Visualization and Analysis of Obtained Solutions

Data to be visualized (depending on problem):

@ Optimization progress via objective function

> measurement data (if compared with the modeled data)

> separate parts of objective (how closely data is fitted)

> entire objective vs. iteration number k (to check monotonicity)
@ Optimization progress via optimization/control variables

> “true” solution (used to generate measurements, then forgotten)
> current solution

> some measures how close they are (monotonicity may not be expected!)
© Other optimization attributes:

> gradients

> state variables (if different from control variables)

> dynamic parameters (optimal step size, weighting coefficients, etc.)

> controlling other techniques (regularization, preconditioning, etc.)

Before your big project starts, think how to:
@ save intermediate/final data instead of graphical images
@ keep data in easily convertible formats, e.g. dat or txt files

@ convert your data into high resolution images or send to external software

12/32

Visualization and Analysis of Obtained Solutions: Example 1.3 (modified)

Modification: more data (6 points), initial guess a® set to exact solution of original

Example 1.3 (with 3 points).

k1:5 100,y =-14.8772 + 10.2222 * x + -1.0676 * X2

10 ==~

5

0

-5

-10

-15
0 2 4 6

25

20

15

10

&

search direction d, norm =

23.3947

1 15 2
components

25 3

60

55

50

objective function (log-scaled), f = 45.2719

0 20 40 60 80 100
iterations, k
step size (log-scaled), o = 0.0001
0 20 40 60 80 100
iterations, k

13/32

Analysis of Gradient Structure: Example 1.3 (modified)

100 search direction d, norm = 546.4833 2 search direction d, norm = 99.3505 search direction d, norm = 23.3947
R (i I [I ————————————— 20
-100
20 15
-200
40 10
-300
60 5
-400
500 -80 1S} Sl I
600 -100 5
1 15 2 25 3 1 15 2 25 3 1 15 2 25 3
components components components

@ visualized d-components: pattern to update controls
@ actual updates: d-components scaled by step size
@ convergence: diminishing range of d-component amplitudes

@ termination condition: norm ||d¥|| = ||Vaf*(a)|| = 0
(also 1-order optimality condition, Chapter 5)

14/32

Analysis of Computational Convergence: Example 1.3 (original & modified)

, convergence: r = 0.94832, C = 0.72001 o5, convergence: r=11168, C = 1.2142
-0.5
-1
- -1 -
% %
o o
B 1.5 B 1.5
j=2 j=2
S 2 S
-2
-2.5
-3 -2.5
-3 -2 -1 0 -2 -1.5 -1 -0.5
k Kk
log,, le"] log,, le"]
—4 —
a=10"* a° far from a* a=1075, a° far from a*
. convergence: r = 1.0018, C = 1.0024 05 convergence: r = 1.0775, C = 1.1422
0
-1
_ 1 —
% T
5 2 5 -15
B E
3 > -2
S S
-4
-2.5
% .
-6 -3
-5 -4 -3 -2 -1 0 1 -2.5 -2 -1.5 -1 -0.5
k (3
log,, le”] log,, le”|

a=10"* a® close to a* a=10"% m=6 case 15/32

Analysis of Computational Convergence (cont'd)

@ Review the concept applied to 1D optimization problems

k+1| —

€ = Cle"|” = logyle log, C + r - logyq [€.

MATLAB's polyfit function to approximate b = log;, C and r as coefficients in

K k1

y=b+rx, x = logyo ",y =logy e,

@ Now, optimization in 3D (a € R®): back to generalized form using || - |2
(Euclidean distance in R") norm and a* = a”" concept

Hek+1” B k+1

i i 12577 ="
m = T T
e A Rk —]l

=C, C<oo.

@ Convergence: linear due to steepest-descent (cannot move it beyond its limits)
@ Faster convergence: consider two options

@ investing further in the optimal step size search, or
@ changing the method itself (method's order).

Q: What would be the best option for our current Example 1.37? For other problems?
16/32

Testing and Dealing with Problems (Debugging)

f-evaluator
@ Test case #1: for known x* and f* = f(x*), run with x = x* to check if f = f*

@ Test case #2: if f # f*, check your ability to control |f — f*| — 0 by tuning
solver parameters (refining mesh, applying higher-order schemes, etc.)

@ Test case #3: run other trustful and commonly used benchmark models and
compare outcomes with published results

*

Test case #1: f-evaluator with a° = a

k=1,y=-15+10*x+-1*x? L search direction d, norm = 0
10 r
5 057
0 OM-----==-====-= L »
0.5
5
-1 L L L s
-10 1 1.5 2 25 3

components

17/32

Testing and Dealing with Problems (Debugging, cont'd)

d-evaluator (problem- and method-dependent)

@ Test case for gradient-based method: run “kappa-test” to check gradient is
accurate and consistent with its FD approximation (see next slide for details)

main OPT part

@ Test every component separately: “change one part at a time”

@ Test communication within the entire framework (variables, dimensions of
vectors/matrices, names, solution files, etc.)

@ Tuning Test: for the same problem, change one parameter/technique at a time
(check sensitivity of performance to this particular change)

@ Robustness Test: for fixed set of parameters/techniques run framework for the
same problem varying initial data; then explore the results and repeat tuning (if
necessary)

@ Applicability Test: apply framework to problems at different levels of complexity
(low, moderate, high)

18/32

TEST Mode for Gradient-based Framework

1D case implementation (by FD-1):

INPUT: data & UPDATE: input
settings
TEST mode S parameters F(x) ~ f(x + Ax) — f(x)
~ —’
measurement Ax
DATA
Ot B%) —)
= Ax ' —1
control/OPT ¢ Ax f'(x)
INltialization if Ax is finite (small) and ¢ — 0

Extension for multidimensional case, x € R", “kappa-test”:
_ f(x+edx) —f(x)

_ T
S 7O U

@ ‘“cheap test”: requires 2 f-evaluations

for fixed 6x, e.g., 6x = x, compute x(¢) for a range of ¢, e.g., ¢ = 1071? = 10?

@ ‘“expensive test”: requires n+ 1 f-evaluations

for fixed ¢, e.g., € = 107°, perform kappa-test changing dx:
[xx00...0",[0x0...0",...,[000 ... x)]”
to check sensitivity for every component of x

19/32

TEST Mode for Gradient-based Framework (cont'd)

Example 1.3: “cheap test” for gradient (Chapter_3_data fit by gradient_test.m)

1.01¢ 10°
q
102
1.005
= 10%
S P —o—o-o2 ____ %
— 10"
0.995 |-
10
0.99 1020
10%° 1010 10° 10° 10 1010 10° 10°
€ €

@ correctness of gradient: range of € spans 9-10 orders of magnitude

@ quantity log;, |k(€) — 1| shows how many significant digits of accuracy are
captured in gradient evaluation
@ well-known effects: «(€) deviates from the unity:

> for very small values of € due to subtractive cancelation (roundoff) errors
> for large values of € due to truncation errors

20/32

TEST Mode for Gradient-based Framework (cont'd)

Example 1.3: “expensive test” Another Example: typical “expensive test
Chapter_3_data fit_by_gradient_test.m for problem with x € R", n = 100

107 ¢ 3r
L]
=
c10®
3
— L]
-1
° L]
2+
L]
10° -3
1 2 3 0 20 40 60 80 100
control/gradient component #, i control/gradient component #, i

@ correctness of i-th gradient component: component-wise sensitivity analysis
(accuracy)

@ easy problem identification: accuracy of gradient vs. sensitivity by single controls

@ both tests, “cheap” and “expensive”, may be repeated throughout the
optimization process to control error/loss of sensitivity (to avoid propagation)

21/32

Example 1.3: Improving Performance — Step Size «

Computational algorithm: (updated) Chapter_3_data fit by gradient_ver 2.m

main OPT-part: written manually [MATLAB]
f-evaluator: m-function, analytically defined function f(a) [MATLAB]
d-evaluator: m-function, analytically defined gradient Va.f(a) [MATLAB]

1D search for a: plain m-code for Golden Section Search [MATLAB]
visualizer: plain m-code [MATLAB]

Implementation of Golden Section Search (line minimization search):

@ find optimal step size a* at every optimization iteration k by solving 1D
minimization problem

ok = argmin f (ak + - dk)
a>0

@ could also use: Bisection, Brute-Force, Monte Carlo methods, etc.

Parameters for Golden Section Search:
@ search interval [a, b]: a=0, b=0.01
@ termination: ¢, = 1072,107> (why diverging?), 10™* (next slide figure),
107° (next two slides figures)

22/32

Example 1.3: Improving Performance — Step Size « (cont'd)

@ step size o via GS: ¢, = 107*

x107*

w
o
°

w

step size, «
INd
(%))

4 6
iterations, k

Tuning-up GS method:
@ search interval [a, b]: are bounds a and b appropriate?
@ ¢ best alignment with the gradient-based search
@ ¢, =107%,107% 11 vs. 21 f-evaluations (per kth iteration)
@ o €[0,107%] vs. o = const = 107* (next slide)

10

step size, «

@ step size o via GS: ¢, = 107°

102

,_\
o
3

10

L] L]
L] L] L]
2 4 6
iterations, k

10

23/32

Example 1.3: Comparing Performance — Step Size «

@ step size o: Golden Section Search (a=0, b=0.01, ¢, = 107°)

k = 200, y = -14.6683 + 9.8374 * X + -0.98332 * X Objective function (log-scaled), f = 0.008179
07) -) 10

0 50 100 150 200
iterations, k

convergence: r = 1.0222, C = 1.0088

-4 -3 -2 -1 0 1
3
log,, le|

@ step size o*: constant value a = 107 (see slides 11 & 15)

k = 5000, y = -14.6684 + 9.8378 * X + -0.98338 * X objective function (log-scaled), f = 0.0081708
o) -) 10

iterations, k

0 1000 2000 3000 4000 5000

convergence: r = 1.0018, C = 1.0024

ok

K+1,
log, I

R N R

-5 -4 -3 -2 -1 0 1
(3
log,, le|

Q: How to improve further the performance of GS method? “Flexibility” for a and b?

24/32

Example 1.3: Improving Performance — Newton's Method

Computational algorithm: (updated) Chapter_3_data fit by gradient_ver 3.m

main OPT-part: written manually [MATLAB]
f-evaluator: m-function, analytically defined function f(a) [MATLAB]
d-evaluator: m-function, analytically defined V,f(a) & [Vﬁi‘(a)}71 [MATLAB]

1D search for a: not required —
visualizer: plain m-code [MATLAB]

Implementation of 2-order Newton’s method for search direction:

@ evaluate gradient Vaf(a*) (slide 4) and Hessian V2f(a)

2%f o%f %f m m 2

3212831 8312832 8212833 m Zi:l Xi Zi:l Xi

2 — o°f o°f o°f _ . m m= 2 m> 3
Vaf(d) = | a55s 500, 5o e Zrin:1 X Z;‘;l X Z;nzl X
of 0f o X Xt 2iX

Oaz Day daz Day Haz Oaz
@ find search direction d* at every optimization iteration k by
-1
d = — [vﬁf(ak)] Vi(a¥)

@ in general method works well with step size a* =1
25/32

Example 1.3: Improving Performance — Newton's Method (cont'd)

Parameters for Newton's method (main OPT-part):
@ initial run: set “no update” for a (o =1) and a® = [-14 11 —2]7

M‘ < e =107° [fails if f(a*!) = f(a*) = 0]

@ termination #1: Fah)

k+1 k
H_ak|
llak]2

@ termination #3: kmax = 100

a

@ termination #2: I 2 < =10"°

k=1,y=-15+10*x+ -1 *x2 objective function (log-scaled), f = 0

10 1010
0 Tt esl q
S R 100
-10 R
Y
20 N
A . 1010}
N
-30 N
A
-40 \ 1020+
AN
\
-50 N
10-30
-60 0 0.2 0.4 0.6 0.8 1

1 2 3 4 5 6 7 8 - .
iterations, k

Q: Optimal solution a* = [—~15 10 — 1]7 is found in one iteration. Why?
26/32

Example 1.3: Improving Performance — Newton's Method (cont'd)

Exploring Newton's method:

@ Update o using GS method with a =0, b= 10, €, = 107°. Check that « returns
optimal value close to 1 (e.g., 1.000000052835619) for the same settings.

@ Check convergence to a* from a® = [—~100 1000 250]".

10 k=1,y=-15+10*x+-1* x2 1030} objective function (log-scaled), f =0
5
100 L
0
10—10 L
-5
1020
-10 0 0.2 0.4 0.6 0.8 1

iterations, k

Q: Explain convergence in 1 iteration.
27/32

Example 1.3: Improving Performance — Newton's Method (cont'd)

Exploring Newton’s method:
@ Check convergence in 1-2 iterations for different data, e.g., m =6

(data_6pt.dat).
@ Make general conclusion on Newton's method applied to quadratic problems.

k=2,y=-14.0096 + 11.1716 * x + -1.2189 * x> , Objective function (log-scaled), f = 31.0291
20 3

103 L

102 L

101 n n L
0 0.5 1 15 2
iterations, k

Q: How will convergence change if gradient V,f(a*) and Hessian V2f(a¥) are

computed for quadratic/non-quadratic problems using any FD approximations?
28/32

Generalized Optimization Framework: Communication

Framework “parameterization” INPUT: data &
o

@ modes: OPT, TEST GSES e)
@ methods: SD, NEWTON, ..., future and measurement ——.

your own methods DATA OPTimization mo

a-search: const, GS, ..., other algorithms

control/OPT
other parts: main solver, regularization, etc. INItialization

% Chapter.3.data_fit_by.gradient_ver_final.m

close all; clc; clear; tic;

o0

params_ver_final; setting INPUT parameters

data = load(dataFile);

5 loading DATA

initialize_ver_final; % INItialization

o

if strcmp(mode, 'OPT'") choosing mode OPT/TEST

mode-OPT; % based on Chapter_3.data-fit.by.gradient_ver.3.m
elseif strcmp (mode, 'TEST')

mode-TEST; % based on Chapter.3.data-fit_-by.gradient_test.m
else

disp(['error: Unknown mode ' mode ' is chosen!']); return;
end

% final output
fprintf (['We are fully done! CPU elapsed time = ' num2str(toc) 's\n\n'l); 29//32

Homework for Chapter 3

@ Run MATLAB code Chapter_3_data_fit_by_gradient.m to experiment with
m > 3 (modified Example 1.3 using steepest descent & constant step size «) for
different parameters o, kmax, and initial guess a’. Check the performance based on
the analysis of the visualized solutions: solution curves, objective function, search
direction (gradient structure), parameters for the computational convergence.

@ Modify MATLAB code Chapter_3_data_fit_by_gradient.m to use any FD
approximations of V,f(a*) for the SD method. For constant step size a, check
the convergence and approximate convergence parameters r and C for both cases:
analytically defined and FD-approximated gradients V,f(a*). Compare the results
and make a conclusion.

@ Modify MATLAB code Chapter_3_data_fit_by_gradient_ver_2.m and repeat the
previous experiments (problem 2) now with optimal step size « chosen by using
the GS method.

30/32

Homework for Chapter 3 (cont'd)

@ Modify MATLAB code Chapter_3_data_fit_by_gradient_ver_3.m and apply
Newton’s method to check the convergence and approximate convergence
parameters r and C for both cases: analytically defined and FD-approximated
gradients Vaf(a*) and Hessians V2f(a*). Compare the results and conclude on
the convergence when using 1-order, 2-order, mixed-order (e.g., 2-order for
gradient and 1-order for Hessian) approximations.

@ Explore the structure of the upgraded MATLAB code
Chapter_3_data_fit_by_gradient_ver_final.m to incorporate computations for
FD-approximated gradients V,f(a*) and Hessians V2f(a*). Discuss the proper
communication concept applied for using FD approximations throughout the entire
framework.

@ In Chapter_3_data_fit by gradient_ver_final.m, upgrade the procedure for

finding optimal step size a* by solving 1D minimization problem

ok = argmin f (ak + - dk)
a>0

using the bisection, brute-force, and Monte Carlo methods.

31/32

Where to Read More for Chapter 3
@ Bukshtynov (2023): Chapter 3

@ Press (2007): Chapter 9 (Root Finding and Nonlinear Sets of Equations),
Chapter 10 (Minimization or Maximization of Functions), Chapter 15 (Modeling of
Data)

MATLAB codes for Chapter 3

@ Chapter_3_data_fit_by_gradient.m @ data_6pt.dat

@ Chapter_3_data_fit_by_gradient_test.m @ kappa_test.m

@ Chapter_3_data_fit_by_gradient_ver_2.m @ golden_section_search.m
@ Chapter_3_data fit by gradient_ver_3.m @ params_ver_2.m

@ Chapter_3_data fit by gradient_ver_final.m @ initialize_ver_2.m

@ params.m @ params_ver_3.m

@ initialize.m @ initialize_ver_3.m

@ visualize.m @ fn eval hess.m

@ fneval f.m @ params_ver_final.m

@ fn eval grad.m @ initialize ver_final.m
@ fn_convergence_sol norm.m @ mode OPT.m

@ datamain.dat @ mode_TEST.m

32/32

