
Topics in Numerical
and Computational Mathematics

Computational Optimization:
Success in Practice

Chapter 3: Generalized Optimization

Framework

© 2023 by Vladislav Bukshtynov
VladislavBukshtynov@yahoo.com

CRC Press
https://www.crcpress.com/

VladislavBukshtynov@yahoo.com
https://www.crcpress.com/

Example 1.3 (revisited): Least-Squares Data Fitting

Input Data: m data points

(xi , yi), i = 1, . . . ,m

Equation to Model Fitting:

yf (x) = a1 + a2x + a3x
2,

where a1, a2, a3 are parameters to
identify while pursuing the best data
fit in the “least-squares” sense

(x1,yf,1)

(x1,y1)

x

y

x1 xm

yf

x2 . . .

(x2,y2)

(xm,ym)

error → min

. . .

(x2,yf,2)

(xm,yf,m)

2
+

2
2

+ +

General Approach: consider constrained optimization problem

min
a∈R3

m∑
i=1

(yi − yf ,i)
2

s.t. yf ,i = a1 + a2xi + a3x
2
i , i = 1, . . . ,m

2/32

Example 1.3 (revisited): Least-Squares Data Fitting (cont’d)

Computational Approach: consider residual vector for m “pieces” of data

r = y−A a =


y1 − (a1 + a2x1 + a3x

2
1)

y2 − (a1 + a2x2 + a3x
2
2)

. . .
ym − (a1 + a2xm + a3x

2
m)

 , A =


1 x1 x2

1

1 x2 x2
2

.
1 xm x2

m

 , y =


y1
y2
. . .
ym


and solve the problem in the form of unconstrained optimization problem

min
a∈R3

f (a)

with objective function

f (a) = ‖r‖2 = r 21 + r 22 + · · ·+ r 2m =
m∑
i=1

(
yi − (a1 + a2xi + a3x

2
i)
)2
,

where a = [a1 a2 a3]T is a control vector.

Case 1: m = 3, y1 6= y2 6= y3 – unique solution could be found exactly (see Example 1.2)

Case 2: m = 1, 2 – infinitely many solutions

Case 3: m > 3 – uniqueness of the solution depends on data

3/32

Parameter Identification for Least-Squares Data Fitting

Objective function:

f (a) =
m∑
i=1

(
yi − (a1 + a2xi + a3x

2
i)
)2

Gradient of the objective function w.r.t. control vector a

∂f

∂a
= ∇af (a) =


∂f
∂a1
∂f
∂a2
∂f
∂a3

 =

 ∑m
i=1 2

(
yi − (a1 + a2xi + a3x

2
i)
)
· (−1)∑m

i=1 2
(
yi − (a1 + a2xi + a3x

2
i)
)
· (−xi)∑m

i=1 2
(
yi − (a1 + a2xi + a3x

2
i)
)
· (−x2

i)


Find optimal solution a∗ by using

gradient-based (steepest descent) iterative approach

ak+1 = ak + αk · dk , dk = −∇af (ak)

optimal step size αk computed by one of the discussed 1D minimization methods

termination

∣∣∣∣ f (ak+1)− f (ak)

f (ak)

∣∣∣∣ < ε (relative decrease of objective)

4/32

Computational Elements of the Generalized Optimization Framework

INPUT: data &
settings

measurement
DATA

control/OPT
INItialization

TEST mode

UPDATE: input
& parameters

OPTimization mode

final OUTPUT &
solution analysis

f - evaluator f - evaluation

visualization

termination

search for dk

search for αk

update: xk + αk dk

visualizer

d - evaluator

1D search

5/32

Choice of Proper Software

Main (core) software:

ideally is self-contained: specialized software
to solve a particular problem

difficult to apply to specific needs or modify

best idea: used as a communication and data
processing framework

OPTimization mode

f - evaluator

visualizer

d - evaluator

1D search

Main software

f -evaluator:

to evaluate objective function(s) f (x)

may require to solve (systems of) (non)linear equation(s), ODE(s), PDE(s)

d-evaluator:

to find search direction(s) d

may require to solve (systems of) (non)linear equation(s), ODE(s), PDE(s)

may require to communicate effectively with f -evaluator

6/32

Choice of Proper Software (cont’d)

Solver for (systems of) (non)linear equation(s), ODE(s), PDE(s):

very problem dependent

trade-off: fast vs. accurate

1D search:

to find optimal step size α

depends on the nature of the problem (differentiability, convexity, constraints, etc.)

may require to communicate effectively with f -evaluator and d-evaluator

Visualizer:

to perform analysis of input data (a priori) and obtained solutions (a posteriori)

to control the progress of optimization algorithm

ideally should not slow down or interrupt main optimization process via fast and
easy access to stored intermediate data

Examples of core software platforms:

MATLAB + access to parallel computing, math, statistics and optimization toolboxes

C++-based scientific environments with added libraries for linear algebra, solving
PDEs, optimization, etc., e.g. FreeFEM

other solvers available in common formats: MATLAB, C++, Python®, Fortran, etc.
7/32

Example 1.3: MATLAB-based Optimization Framework

% Chapter 3 data fit by gradient.m

close all; clc; clear;

params; % setting INPUT parameters

data = load(dataFile); % loading DATA

initialize; % INItialization

while(k < kMax+1) % termination condition #2 % main OPTimization loop

obj = [obj f(a, data)]; % f-evaluation

visualize; % visualization

if k > 0 % termination condition #1 % checking optimality (by tolerance)
err = abs(obj(end-1)-obj(end))/obj(end-1);
if (err < epsilon)

break;
end

end

d = -grad(a,data); % search for d: computing gradient

alpha = alphaConst; % search for alpha

a = a + alpha*d; % update for controls

k = k + 1; % iteration counter increment

end
8/32

Example 1.3: Choosing and Adjusting Optimization Algorithms

Computational elements: Chapter 3 data fit by gradient.m

main OPT-part: written manually [MATLAB]

f -evaluator: m-function, analytically defined function f (a) [MATLAB]

d-evaluator: m-function, analytically defined gradient ∇af (a) [MATLAB]

1D search for α: constant value, α = const —
visualizer: plain m-code [MATLAB]

Parameters:

initial run: set α = 10−3 and a0 = [1 1 1]T (dashed blue line)

termination #1:
∣∣∣ f (ak+1)−f (ak)

f (ak)

∣∣∣ < ε = 10−6

termination #2: kmax = 5

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6
105

0 1 2 3 4 5
iterations, k

102

104

106

108

1010

Q: Why does it diverge? 9/32

Example 1.3: Choosing and Adjusting Optimization Algorithms (cont’d)

Adjusting algorithm: change step size to α = 10−4, 10−5, 10−6 & kmax = 50

1 2 3 4 5 6 7 8
0

20

40

60

80
k = 50, y = 0.98836 + 0.89715 * x + 0.0008539 * x2

0 10 20 30 40 50
iterations, k

101

102

103

objective function (log-scaled), f = 24.36

α = 10−4

1 2 3 4 5 6 7 8
0

20

40

60

80
k = 50, y = 0.9772 + 0.85984 * x + 0.064315 * x2

0 10 20 30 40 50
iterations, k

102

103

objective function (log-scaled), f = 34.7048

α = 10−5

1 2 3 4 5 6 7 8
0

20

40

60

80
k = 50, y = 0.99386 + 0.96287 * x + 0.75781 * x2

0 10 20 30 40 50
iterations, k

1800

2000

2200

2400

2600

objective function (log-scaled), f = 1616.0283

α = 10−6

Q: Now it converges, what about performance?

10/32

Example 1.3: Choosing and Adjusting Optimization Algorithms (cont’d)

Adjusting algorithm:

Fix step size to α = 10−4 and kmax = 5000

Make initial guess closer to a∗ = [−15 10 − 1]T , e.g. a0 = [−14 11 − 2]T

Explore the results (shown below)

1 2 3 4 5 6 7 8
-60

-50

-40

-30

-20

-10

0

10
k = 5000, y = -14.6684 + 9.8378 * x + -0.98338 * x2

0 1000 2000 3000 4000 5000
iterations, k

10-2

100

102

104
objective function (log-scaled), f = 0.0081708

Q: What could be done to check and increase further the performance?

11/32

Visualization and Analysis of Obtained Solutions

Data to be visualized (depending on problem):

1 Optimization progress via objective function
I measurement data (if compared with the modeled data)
I separate parts of objective (how closely data is fitted)
I entire objective vs. iteration number k (to check monotonicity)

2 Optimization progress via optimization/control variables
I “true” solution (used to generate measurements, then forgotten)
I current solution
I some measures how close they are (monotonicity may not be expected!)

3 Other optimization attributes:
I gradients
I state variables (if different from control variables)
I dynamic parameters (optimal step size, weighting coefficients, etc.)
I controlling other techniques (regularization, preconditioning, etc.)

Before your big project starts, think how to:

save intermediate/final data instead of graphical images

keep data in easily convertible formats, e.g. dat or txt files

convert your data into high resolution images or send to external software

12/32

Visualization and Analysis of Obtained Solutions: Example 1.3 (modified)

Modification: more data (6 points), initial guess a0 set to exact solution of original
Example 1.3 (with 3 points).

0 2 4 6 8
-15

-10

-5

0

5

10

15
k = 100, y = -14.8772 + 10.2222 * x + -1.0676 * x2

1 1.5 2 2.5 3
components

-5

0

5

10

15

20

25
search direction d, norm = 23.3947

0 20 40 60 80 100
iterations, k

50

55

60

objective function (log-scaled), f = 45.2719

0 20 40 60 80 100
iterations, k

10-5

10-4

10-3
step size (log-scaled), = 0.0001

13/32

Analysis of Gradient Structure: Example 1.3 (modified)

1 1.5 2 2.5 3

components

-600

-500

-400

-300

-200

-100

0

100
search direction d, norm = 546.4833

k = 1

1 1.5 2 2.5 3

components

-100

-80

-60

-40

-20

0

20
search direction d, norm = 99.3505

k = 5

1 1.5 2 2.5 3
components

-5

0

5

10

15

20

25
search direction d, norm = 23.3947

k = 100

visualized d-components: pattern to update controls

actual updates: d-components scaled by step size α

convergence: diminishing range of d-component amplitudes

termination condition: norm ‖dk‖ = ‖∇af
k(a)‖ = 0

(also 1-order optimality condition, Chapter 5)

14/32

Analysis of Computational Convergence: Example 1.3 (original & modified)

-3 -2 -1 0

log
10

 |ek|

-3

-2.5

-2

-1.5

-1

-0.5

0
lo

g
10

 |e
k+

1 |
convergence: r = 0.94832, C = 0.72091

α = 10−4, a0 far from a∗

-5 -4 -3 -2 -1 0 1

log
10

 |ek|

-6

-5

-4

-3

-2

-1

0

1

lo
g

10
 |e

k+
1 |

convergence: r = 1.0018, C = 1.0024

α = 10−4, a0 close to a∗

-2 -1.5 -1 -0.5

log
10

 |ek|

-2.5

-2

-1.5

-1

-0.5

lo
g

10
 |e

k+
1 |

convergence: r = 1.1168, C = 1.2142

α = 10−6, a0 far from a∗

-2.5 -2 -1.5 -1 -0.5

log
10

 |ek|

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

10
 |e

k+
1 |

convergence: r = 1.0775, C = 1.1422

α = 10−4, m = 6 case 15/32

Analysis of Computational Convergence (cont’d)

Review the concept applied to 1D optimization problems

|ek+1| = C |ek |r ⇒ log10 |e
k+1| = log10 C + r · log10 |e

k |.

MATLAB’s polyfit function to approximate b = log10 C and r as coefficients in

y = b + rx , x = log10 |e
k |, y = log10 |e

k+1|.

Now, optimization in 3D (a ∈ R3): back to generalized form using ‖ · ‖2
(Euclidean distance in Rn) norm and a∗ = alast concept

lim
k→∞

‖ek+1‖
‖ek‖r = lim

k→∞

‖ak+1 − a∗‖2
‖ak − a∗‖r2

= C , C <∞.

Convergence: linear due to steepest-descent (cannot move it beyond its limits)

Faster convergence: consider two options

1 investing further in the optimal step size search, or
2 changing the method itself (method’s order).

Q: What would be the best option for our current Example 1.3? For other problems?

16/32

Testing and Dealing with Problems (Debugging)

f -evaluator

Test case #1: for known x∗ and f ∗ = f (x∗), run with x = x∗ to check if f = f ∗

Test case #2: if f 6= f ∗, check your ability to control |f − f ∗| → 0 by tuning
solver parameters (refining mesh, applying higher-order schemes, etc.)

Test case #3: run other trustful and commonly used benchmark models and
compare outcomes with published results

Test case #1: f -evaluator with a0 = a∗

1 2 3 4 5 6 7 8
-10

-5

0

5

10
k = 1, y = -15 + 10 * x + -1 * x2

1 1.5 2 2.5 3
components

-1

-0.5

0

0.5

1
search direction d, norm = 0

17/32

Testing and Dealing with Problems (Debugging, cont’d)

d-evaluator (problem- and method-dependent)

Test case for gradient-based method: run “kappa-test” to check gradient is
accurate and consistent with its FD approximation (see next slide for details)

main OPT part

Test every component separately: “change one part at a time”

Test communication within the entire framework (variables, dimensions of
vectors/matrices, names, solution files, etc.)

Tuning Test: for the same problem, change one parameter/technique at a time
(check sensitivity of performance to this particular change)

Robustness Test: for fixed set of parameters/techniques run framework for the
same problem varying initial data; then explore the results and repeat tuning (if
necessary)

Applicability Test: apply framework to problems at different levels of complexity
(low, moderate, high)

18/32

TEST Mode for Gradient-based Framework

INPUT: data &

settings

measurement
DATA

control/OPT
INItialization

TEST mode

UPDATE: input
& parameters

f - evaluator

d - evaluator

1D case implementation (by FD-1):

f ′(x) ≈ f (x + ∆x)− f (x)

∆x
,

κ =
f (x + ε∆x)− f (x)

ε ∆x f ′(x)
→ 1

if ∆x is finite (small) and ε→ 0

Extension for multidimensional case, x ∈ Rn, “kappa-test”:

κ(ε) =
f (x + ε δx)− f (x)

ε 〈∇xf (x), δx〉 , δx = [∆x1 ∆x2 . . . ∆xn]T , ε→ 0

“cheap test”: requires 2 f -evaluations

for fixed δx, e.g., δx = x, compute κ(ε) for a range of ε, e.g., ε = 10−12 ÷ 102

“expensive test”: requires n + 1 f -evaluations

for fixed ε, e.g., ε = 10−6, perform kappa-test changing δx:
[x1 0 0 . . . 0]T , [0 x2 0 . . . 0]T , . . . , [0 0 0 . . . xn]T

to check sensitivity for every component of x

19/32

TEST Mode for Gradient-based Framework (cont’d)

Example 1.3: “cheap test” for gradient (Chapter 3 data fit by gradient test.m)

10-15 10-10 10-5 100
0.99

0.995

1

1.005

1.01

(
)

10-15 10-10 10-5 100
10-10

10-8

10-6

10-4

10-2

100

|
(

)
-

1|
correctness of gradient: range of ε spans 9-10 orders of magnitude

quantity log10 |κ(ε)− 1| shows how many significant digits of accuracy are
captured in gradient evaluation

well-known effects: κ(ε) deviates from the unity:

I for very small values of ε due to subtractive cancelation (roundoff) errors
I for large values of ε due to truncation errors

20/32

TEST Mode for Gradient-based Framework (cont’d)

Example 1.3: “expensive test”
Chapter 3 data fit by gradient test.m

1 2 3

control/gradient component #, i

10-9

10-8

10-7

|
(i)

 -
 1

|

Another Example: typical “expensive test”
for problem with x ∈ Rn, n = 100

0 20 40 60 80 100
control/gradient component #, i

-3

-2

-1

0

1

2

3

(i)
correctness of i-th gradient component: component-wise sensitivity analysis
(accuracy)

easy problem identification: accuracy of gradient vs. sensitivity by single controls

both tests, “cheap” and “expensive”, may be repeated throughout the
optimization process to control error/loss of sensitivity (to avoid propagation)

21/32

Example 1.3: Improving Performance – Step Size α

Computational algorithm: (updated) Chapter 3 data fit by gradient ver 2.m

main OPT-part: written manually [MATLAB]

f -evaluator: m-function, analytically defined function f (a) [MATLAB]

d-evaluator: m-function, analytically defined gradient ∇af (a) [MATLAB]

1D search for α: plain m-code for Golden Section Search [MATLAB]

visualizer: plain m-code [MATLAB]

Implementation of Golden Section Search (line minimization search):

find optimal step size αk at every optimization iteration k by solving 1D
minimization problem

αk = argmin
α>0

f
(
ak + α · dk

)
could also use: Bisection, Brute-Force, Monte Carlo methods, etc.

Parameters for Golden Section Search:

search interval [a, b]: a = 0, b = 0.01

termination: εα = 10−2, 10−3 (why diverging?), 10−4 (next slide figure),
10−6 (next two slides figures)

22/32

Example 1.3: Improving Performance – Step Size α (cont’d)

step size αk via GS: εα = 10−4

0 2 4 6 8 10

iterations, k

2

2.5

3

3.5

st
ep

 s
iz

e,

10-4

step size αk via GS: εα = 10−6

0 2 4 6 8 10

iterations, k

10-4

10-3

10-2

st
ep

 s
iz

e,

Tuning-up GS method:

search interval [a, b]: are bounds a and b appropriate?

εα: best alignment with the gradient-based search

εα = 10−4, 10−6: 11 vs. 21 f -evaluations (per kth iteration)

αk ∈ [0, 10−2] vs. αk = const = 10−4 (next slide)

23/32

Example 1.3: Comparing Performance – Step Size α

step size αk : Golden Section Search (a = 0, b = 0.01, εα = 10−6)

1 2 3 4 5 6 7 8
-60

-50

-40

-30

-20

-10

0

10
k = 200, y = -14.6683 + 9.8374 * x + -0.98332 * x2

0 50 100 150 200
iterations, k

10-2

100

102

104
objective function (log-scaled), f = 0.008179

-4 -3 -2 -1 0 1

log
10

 |ek|

-5

-4

-3

-2

-1

0

1

lo
g

10
 |e

k+
1 |

convergence: r = 1.0222, C = 1.0088

step size αk : constant value α = 10−4 (see slides 11 & 15)

1 2 3 4 5 6 7 8
-60

-50

-40

-30

-20

-10

0

10
k = 5000, y = -14.6684 + 9.8378 * x + -0.98338 * x2

0 1000 2000 3000 4000 5000
iterations, k

10-2

100

102

104
objective function (log-scaled), f = 0.0081708

-5 -4 -3 -2 -1 0 1

log
10

 |ek|

-6

-5

-4

-3

-2

-1

0

1

lo
g

10
 |e

k+
1 |

convergence: r = 1.0018, C = 1.0024

Q: How to improve further the performance of GS method? “Flexibility” for a and b?
24/32

Example 1.3: Improving Performance – Newton’s Method

Computational algorithm: (updated) Chapter 3 data fit by gradient ver 3.m

main OPT-part: written manually [MATLAB]

f -evaluator: m-function, analytically defined function f (a) [MATLAB]

d-evaluator: m-function, analytically defined ∇af (a) &
[
∇2

af (a)
]−1

[MATLAB]

1D search for α: not required —
visualizer: plain m-code [MATLAB]

Implementation of 2-order Newton’s method for search direction:

evaluate gradient ∇af (ak) (slide 4) and Hessian ∇2
af (ak)

∇2
af (a) =


∂2f

∂a1 ∂a1

∂2f
∂a1 ∂a2

∂2f
∂a1 ∂a3

∂2f
∂a2 ∂a1

∂2f
∂a2 ∂a2

∂2f
∂a2 ∂a3

∂2f
∂a3 ∂a1

∂2f
∂a3 ∂a2

∂2f
∂a3 ∂a3

 = 2 ·

 m
∑m

i=1 xi
∑m

i=1 x
2
i∑m

i=1 xi
∑m

i=1 x
2
i

∑m
i=1 x

3
i∑m

i=1 x
2
i

∑m
i=1 x

3
i

∑m
i=1 x

4
i


find search direction dk at every optimization iteration k by

dk = −
[
∇2

af (ak)
]−1

∇f (ak)

in general method works well with step size αk = 1

25/32

Example 1.3: Improving Performance – Newton’s Method (cont’d)

Parameters for Newton’s method (main OPT-part):

initial run: set “no update” for α (αk = 1) and a0 = [−14 11 − 2]T

termination #1:
∣∣∣ f (ak+1)−f (ak)

f (ak)

∣∣∣ < ε1 = 10−6 [fails if f (ak+1) = f (ak) = 0]

termination #2: ‖a
k+1−ak‖2
‖ak‖2

< ε2 = 10−6

termination #3: kmax = 100

1 2 3 4 5 6 7 8
-60

-50

-40

-30

-20

-10

0

10
k = 1, y = -15 + 10 * x + -1 * x2

0 0.2 0.4 0.6 0.8 1

iterations, k

10-30

10-20

10-10

100

1010
objective function (log-scaled), f = 0

Q: Optimal solution a∗ = [−15 10 − 1]T is found in one iteration. Why?

26/32

Example 1.3: Improving Performance – Newton’s Method (cont’d)

Exploring Newton’s method:

Update α using GS method with a = 0, b = 10, εα = 10−6. Check that α returns
optimal value close to 1 (e.g., 1.000000052835619) for the same settings.

Check convergence to a∗ from a0 = [−100 1000 250]T .

1 2 3 4 5 6 7 8
-10

-5

0

5

10
k = 1, y = -15 + 10 * x + -1 * x2

0 0.2 0.4 0.6 0.8 1

iterations, k

10-20

10-10

100

1010
objective function (log-scaled), f = 0

Q: Explain convergence in 1 iteration.

27/32

Example 1.3: Improving Performance – Newton’s Method (cont’d)

Exploring Newton’s method:

Check convergence in 1–2 iterations for different data, e.g., m = 6
(data 6pt.dat).

Make general conclusion on Newton’s method applied to quadratic problems.

0 2 4 6 8
-80

-60

-40

-20

0

20
k = 2, y = -14.0996 + 11.1716 * x + -1.2189 * x2

0 0.5 1 1.5 2

iterations, k

101

102

103

104
objective function (log-scaled), f = 31.0291

Q: How will convergence change if gradient ∇af (ak) and Hessian ∇2
af (ak) are

computed for quadratic/non-quadratic problems using any FD approximations?

28/32

Generalized Optimization Framework: Communication

Framework “parameterization”

modes: OPT, TEST

methods: SD, NEWTON, . . . , future and
your own methods

α-search: const, GS, . . . , other algorithms

other parts: main solver, regularization, etc.

INPUT: data &

settings

measurement
DATA

control/OPT
INItialization

TEST mode

OPTimization mode

% Chapter 3 data fit by gradient ver final.m

close all; clc; clear; tic;

params ver final; % setting INPUT parameters

data = load(dataFile); % loading DATA

initialize ver final; % INItialization

if strcmp(mode,'OPT') % choosing mode OPT/TEST
mode OPT; % based on Chapter 3 data fit by gradient ver 3.m

elseif strcmp(mode,'TEST')
mode TEST; % based on Chapter 3 data fit by gradient test.m

else
disp(['error: Unknown mode ' mode ' is chosen!']); return;

end

% final output
fprintf(['We are fully done! CPU elapsed time = ' num2str(toc) 's\n\n']); 29/32

Homework for Chapter 3

Run MATLAB code Chapter 3 data fit by gradient.m to experiment with
m > 3 (modified Example 1.3 using steepest descent & constant step size α) for
different parameters α, kmax , and initial guess a0. Check the performance based on
the analysis of the visualized solutions: solution curves, objective function, search
direction (gradient structure), parameters for the computational convergence.

Modify MATLAB code Chapter 3 data fit by gradient.m to use any FD
approximations of ∇af (ak) for the SD method. For constant step size α, check
the convergence and approximate convergence parameters r and C for both cases:
analytically defined and FD-approximated gradients ∇af (ak). Compare the results
and make a conclusion.

Modify MATLAB code Chapter 3 data fit by gradient ver 2.m and repeat the
previous experiments (problem 2) now with optimal step size α chosen by using
the GS method.

30/32

Homework for Chapter 3 (cont’d)

Modify MATLAB code Chapter 3 data fit by gradient ver 3.m and apply
Newton’s method to check the convergence and approximate convergence
parameters r and C for both cases: analytically defined and FD-approximated
gradients ∇af (ak) and Hessians ∇2

af (ak). Compare the results and conclude on
the convergence when using 1-order, 2-order, mixed-order (e.g., 2-order for
gradient and 1-order for Hessian) approximations.

Explore the structure of the upgraded MATLAB code
Chapter 3 data fit by gradient ver final.m to incorporate computations for
FD-approximated gradients ∇af (ak) and Hessians ∇2

af (ak). Discuss the proper
communication concept applied for using FD approximations throughout the entire
framework.

In Chapter 3 data fit by gradient ver final.m, upgrade the procedure for
finding optimal step size αk by solving 1D minimization problem

αk = argmin
α>0

f
(
ak + α · dk

)
using the bisection, brute-force, and Monte Carlo methods.

31/32

Where to Read More for Chapter 3

Bukshtynov (2023): Chapter 3

Press (2007): Chapter 9 (Root Finding and Nonlinear Sets of Equations),
Chapter 10 (Minimization or Maximization of Functions), Chapter 15 (Modeling of
Data)

MATLAB codes for Chapter 3

Chapter 3 data fit by gradient.m

Chapter 3 data fit by gradient test.m

Chapter 3 data fit by gradient ver 2.m

Chapter 3 data fit by gradient ver 3.m

Chapter 3 data fit by gradient ver final.m

params.m

initialize.m

visualize.m

fn eval f.m

fn eval grad.m

fn convergence sol norm.m

data main.dat

data 6pt.dat

kappa test.m

golden section search.m

params ver 2.m

initialize ver 2.m

params ver 3.m

initialize ver 3.m

fn eval hess.m

params ver final.m

initialize ver final.m

mode OPT.m

mode TEST.m
32/32

