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Optimization Models

Main goal:
@ formulate a model in terms of mathematical notations, and

@ find the set of parameters for this model attempting to find the best possible
solution for the problem the model is created for

Model complexity:
@ model size

@ simplicity to find accurate mathematical description

Examples:
@ Models to describe medical, biological, chemical processes.

@ Better knowledge of natural objects to minimize loses from natural disasters &
maximize profit from its power.

@ Design of the business structures to minimize loses and maximize profit.

@ Geometry of airfoil /rocket/submarine to minimize weight/drag and to maximize
lift.

@ Other examples from your own research and expertise area(s).
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General Notations for Optimization Problem

min / max f(u)
ucRn

subject to  hi(x;u) =0, i=1,...
0

@ min/max problem

@ optimization (control, decision, design) variable u € R"

> state x vs. control u variables

@ objective (cost) function(al) f(u) : R” — R (scalar)
> in general we consider f(x; u)

@ constraints

> equality/inequality
» ODE/PDE systems

> other requirements, e.g. functional spaces for x and u

@ feasible region (feasible set, control/solution space) S, defined by constraints

> feasible u € S vs. infeasible u ¢ S solutions

@ optimal solution u* = argmin f(u)
ues
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Classification of Optimization Problems

@ type of constraints: unconstrained/constrained (ODE/PDE-based optimization)

@ nature of equations involved: linear programming (LP) & nonlinear programming
(NLP) problems, quadratic (QP), etc.

@ permissible values of controls: continuous, discrete (e.g. integer programming)
@ deterministic nature of variables: deterministic, stochastic (or probabilistic)

@ separability of functions: separable, non-separable

@ number of objectives: single-objective, multi-objective

@ other types: optimal control, non-optimal control, etc.
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Example 1.1: Constrained Optimization with Nonlinear Objective

Find the point x = [x1 x2]” € R? on the line x; + x2 = 10 closest to the point (10, 10)

d = /(xg — xa)2 + (y& — ya)? — minimize

Problem: constrained 2D QP optimization

min f(x) = (1 — 10)* + (x2 — 10)°

xER2
st. x1+x =10

Solution: optimal x* =[5 5]" found

@ geometrically (in figure)

@ analytically (goes to homework)

X2
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Example 1.2: Data Fitting

Data: 3 points (2,1), (4,9), (7,6)
Find coefficients a1, a», a3 assuming quadratic fit y = a; + axx + asx?

Solution (exact): a =[—15 10 —1]" or 10
y(x) = —15 4 10x — x? found from the
system of linear equations 8
a1 + 2a> + 4a3 =1, 6
a1+ 4ax + 16a3 =9, 4
a1+ 7ax +49a3 =6.
Using matrix notation: 2 —— polynomial curve
® data points
-1 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Aa=y = a=A"y, 1 2 3 4 5 6 7 8
where
1 x1 x12 1 2 4 a n 1
A=|1 x x| =|1 4 16 |, a=| a |, y=1|y» | =19
1 x3 x5 1 7 49 as ¥3 6

solvable (conditionally): # of data = # of unknowns; what are the conditions?

Q: what if the problem is overdetermined (>) / underdetermined (<)?
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Example 1.2: Data Fitting (cont'd)

MATLAB code: Chapter_1_data_fit.m

input data: data = [2 1; 4 9; 7 6];

solution #1: by separate m-code DataFitM.m

solution #2: by user-defined m-function DataFitFn
solution #3: by Matlab's built-in function POLYFIT(X,Y,N)
solution conversion: polynomial preparation

visualization

Aspects to consider:

implementation: m-code vs. user-defined function vs. built-in function

code readability: block-wise structures, comments, self-explanatory naming, etc.
user-defined interface to prevent code breaking

proper debugging with multiple tests & special cases (next slide)

visualization to comfort analysis of the results

7/18



Example 1.2: Data Fitting (cont'd)

Test cases:
a; = -15, a,= 10, a;= -1 a; = 19, a,= -8.8333, a;= 1.1667 a = -0.33333, a,= 4, a;= -0.66667
10 6 6
8 55
5
5
6
4 4.5
4
4
3
2 35
0 2 3
1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4 5
6.3429e-15, a,= 1, a,= 4.9582e-16 a = 3, a,= -1.3487e-15, a;= 2.0724e-16 a; = Inf, a,= Inf, a;= Inf
4 6 °
45
35 5
4
35 3 0 4 [ )
3
25 3
25
2 2 2 il
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5
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Example 1.3: Least-Squares Data Fitting

Consider previous example: new (4th) data point (3, 6) fits the model

If ya # 6 or other data points (measurements) suffer from errors — model equation

y=a1+ ax+ agx2 cannot be solved exactly!

Residual vector for m “pieces” of data

y1— (a1 + ax1 + 33X12)

r—y—Aa= yz—(31+22X2+a3X22)

Ym — (a1 + a2xm + a3x3)

Least-squares data fitting: (common approach)

m 2
;QJIRH f(a)—f1+fz+ +fm Z( 31+32X,+33X,)) )

where a = [a1 a2 a3]".

@ (2,1),(4,9),(7,6),(3,6) - “perfect match” —r=10

@ otherwise — r £ 0, where r; describes data “mismatch”, i=1,...,m
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Feasibility

Constrained optimization problem (simplified, state x is also control):

o
sit. hi(x) =0, i=1,...,p
gJ(X) > Y, J = 17 , m

@ feasible region (set) S: a set of all solutions
satisfying (x)

@ feasible solution: x € §

@ boundary of feasible region and interior points

@ active constraint gj(x) < 0 at xo:
if g;(Xo) =0

@ active set of constraints at xg: all active
constraints

@ eliminating constrains by adding them to
objective (substitution, Lagrange multipliers)

(%)
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Optimality

Consider general optimization problem:

o
st. xeS
Af(x) N(X)

@ x" is a global minimizer of f in S: if Yx € S f(x*) < f(x)
@ x" is a local minimizer of f in S: if ¥x €S s.t. [x —x*|| <e Ff(x*) < f(x)
@ in case f(x") < f(x), but x # x*, x" is a strict local (global) minimizer
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Convexity (convex set vs. convex function)

A set Sis convex if Vx,ye€S: ax+(l—-a)yeS, V0<a<l

(@Xo) @l

(a) 1D: convex (b) 2D: convex (c) 2D: non-convex

f(x)

A function f is convex on a convex set Sif Vx,y € S:

flax+ (1 — a)y) < af(x) + (1 — a)f(y)

i vo<a<l
| ' i @ in case of > function f is concave
! flax+(1-a)y] 1
i ; ' @ strictly convex/concave for < or >
Py é o

<
x

X ax+(1-a)y
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General Optimization Algorithm (iterative)

To solve the problem:

min f(x)
st. xeS

Choose initial guess x° (and algorithm settings)

o0

For k =1,2,... check (computational) optimality of x*, e.g.
> x* reduces f(x) up to a necessary level
> V£(x*) =0 (local optimum condition)
> other termination conditions (next slide)

@ If OK (optimal) — STOP
@ Find solution update (change, perturbation) &%,
e.g. by means of search direction d*
@ Update the solution
XL )k 1 g% — xk 4 ok dk
Q Goto?2
@ scarch direction d* improves the solution in some sense, e.g. d* = —Vf(x¥)

@ step size o is determined in assumption f(x**!) < £(x¥)
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General Optimization Algorithm (cont’d): Termination Conditions

Based on
@ sufficient changes in the solution: (in some norm N)
> absolute decrease ||x" — xk_1||N <e€
k _ k=1
[Ix* = <],

> relative decrease =
[ =l

<€
@ sufficient changes in the objective:
> absolute decrease |f(x*) — f(x*!)| < e

F(x¥) — F(x*1) .
e

> relative decrease

© computational efforts:
> max number of optimization iterations kmax: k > Kmax
> max number of objective evaluations

> limit on elapsed computational time T: t > T

Q: (%) are recommended options (problem dependent). Why?

()
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Convergence

Computational complexity: # of arithmetic operations
required to find a solution

Solving a problem iteratively: does it converge? if yes, how
fast?

Sequence of errors ek = x*

— x* assuming lim e =0
k— o0
Sequence {x“} converges to x* ({x*} — x*) with rate r

and constant C if

k+1 K+l _ o
e
T koo ||xK —xx||”
linear convergence: ||e™!|| = C|le*||, r=1

» 0 < C < 1- converges (C — 0 faster, C — 1 slower)
» C > 1 - diverges

superlinear: C =0, also r > 1

sublinear: C =1

quadratic r = 2; cubic r =3, ...

hard to analyze in real computations as x* is not always available
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Homework for Chapter 1

@ Solve problem in Example 1.1 analytically.

@ Modify MATLAB code Chapter_1_data_fit.m for Example 1.2:
> to work with new data (4 or 5 points) by using all 3 solution approaches,
> repeat for data with m (m > 5) points,

> implement check-up to prevent code breaking in case the problem is under-
or overdetermined,

> implement check-up to prevent inf/nan problem in case the data is
“defective”.

@ Show that a set is convex if and only if its intersection with any line is convex.
@ In general the product or ratio of two convex functions is not convex. However,
there are some results that apply to functions on R. Prove the following.

> If f and g are convex, both nondecreasing (or nonincreasing), and positive
functions on an interval, then fg is convex.

> If f is convex, nondecreasing, and positive, and g is concave, nonincreasing,
and positive, then f/g is convex.

16/18



Homework for Chapter 1 (cont'd)

@ Using second-order condition for convexity for each of the following functions
determine whether it is convex or concave:
(a) f(x)=e*—1onR,
(b) f(x1,x2) = xax2 on Ry X Ry,
1
c) f(xu, = —on Ry xRy,
(c) f(x1,x) oy + xRy
2

(d) f(xi,x) = X on R x R4,
X2

(e) f(x1,x) =xPx;~ % where 0 < a<1,onR, xR;.

@ For each of the following sequences with given general term x¥, prove that the
sequence converges, find its limit, and determine convergence parameters r and C:

(a) xk=27%
(b) x*=1+5-10"%,
(c) xk= 37
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Where to Read More for Chapter 1

@ Bukshtynov (2023): Chapter 1

@ Bertsimas (1997): Chapter 1 (Introduction), Chapter 2 (The Geometry of Linear
Programming)

@ Boyd (2004): Chapter 1 (Introduction), Chapter 2 (Convex Sets), Chapter 3
(Convex Functions)

@ Griva (2009): Chapter 1 (Optimization Models), Chapter 2 (Fundamentals of
Optimization)

@ Nocedal (2006): Chapter 1 (Introduction), Chapter 2 (Fundamentals of

Unconstrained Optimization)

MATLAB codes for Chapter 1
@ Chapter_1l_data_fit.m
@ DataFitM.m
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