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Optimization Models

Main goal:

1 formulate a model in terms of mathematical notations, and

2 find the set of parameters for this model attempting to find the best possible
solution for the problem the model is created for

Model complexity:

model size

simplicity to find accurate mathematical description

Examples:

Models to describe medical, biological, chemical processes.

Better knowledge of natural objects to minimize loses from natural disasters &
maximize profit from its power.

Design of the business structures to minimize loses and maximize profit.

Geometry of airfoil/rocket/submarine to minimize weight/drag and to maximize
lift.

Other examples from your own research and expertise area(s).
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General Notations for Optimization Problem

min /max
u∈Rn

f (u)

subject to hi (x; u) = 0, i = 1, . . . , p

gj(x; u) ≤ 0, j = 1, . . . , m

min/max problem

optimization (control, decision, design) variable u ∈ Rn

I state x vs. control u variables

objective (cost) function(al) f (u) : Rn → R (scalar)

I in general we consider f (x; u)

constraints

I equality/inequality
I ODE/PDE systems
I other requirements, e.g. functional spaces for x and u

feasible region (feasible set, control/solution space) S, defined by constraints

I feasible u ∈ S vs. infeasible u /∈ S solutions

optimal solution u∗ = argmin
u∈S

f (u)
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Classification of Optimization Problems

type of constraints: unconstrained/constrained (ODE/PDE-based optimization)

nature of equations involved: linear programming (LP) & nonlinear programming
(NLP) problems, quadratic (QP), etc.

permissible values of controls: continuous, discrete (e.g. integer programming)

deterministic nature of variables: deterministic, stochastic (or probabilistic)

separability of functions: separable, non-separable

number of objectives: single-objective, multi-objective

other types: optimal control, non-optimal control, etc.

4/18



Example 1.1: Constrained Optimization with Nonlinear Objective

Find the point x = [x1 x2]T ∈ R2 on the line x1 + x2 = 10 closest to the point (10, 10)

d =
√

(xB − xA)2 + (yB − yA)2 → minimize

Problem: constrained 2D QP optimization

min
x∈R2

f (x) = (x1 − 10)2 + (x2 − 10)2

s.t. x1 + x2 = 10

Solution: optimal x∗ = [5 5]T found

geometrically (in figure)

analytically (goes to homework)

 

x1 5 10 

x2 

10 

5 

A 

B 
d 

dmin 

x* feasible set 

feasible solution 
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Example 1.2: Data Fitting

Data: 3 points (2, 1), (4, 9), (7, 6)
Find coefficients a1, a2, a3 assuming quadratic fit y = a1 + a2x + a3x

2

Solution (exact): a = [−15 10 − 1]T or
y(x) = −15 + 10x − x2 found from the
system of linear equations

a1 + 2a2 + 4a3 = 1,

a1 + 4a2 + 16a3 = 9,

a1 + 7a2 + 49a3 = 6.

Using matrix notation:

A a = y ⇒ a = A−1y, 1 2 3 4 5 6 7 8
0

2

4

6

8

10

polynomial curve
data points

where

A =

 1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 =

 1 2 4
1 4 16
1 7 49

 , a =

 a1
a2
a3

 , y =

 y1
y2
y3

 =

 1
9
6


solvable (conditionally): # of data = # of unknowns; what are the conditions?

Q: what if the problem is overdetermined (>) / underdetermined (<)?
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Example 1.2: Data Fitting (cont’d)

MATLAB code: Chapter 1 data fit.m

input data: data = [2 1; 4 9; 7 6];

solution #1: by separate m-code DataFitM.m

solution #2: by user-defined m-function DataFitFn

solution #3: by Matlab’s built-in function POLYFIT(X,Y,N)

solution conversion: polynomial preparation

visualization

Aspects to consider:

implementation: m-code vs. user-defined function vs. built-in function

code readability: block-wise structures, comments, self-explanatory naming, etc.

user-defined interface to prevent code breaking

proper debugging with multiple tests & special cases (next slide)

visualization to comfort analysis of the results
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Example 1.2: Data Fitting (cont’d)

Test cases:

1 2 3 4 5 6 7 8
0

2

4

6

8

10
a

1
 = -15, a

2
 = 10, a

3
 = -1

1 2 3 4 5 6
2

2.5

3

3.5

4

4.5

5
a

1
 = 6.3429e-15, a

2
 = 1, a

3
 = 4.9582e-16

1 2 3 4 5 6
2

3

4

5

6
a

1
 = 19, a

2
 = -8.8333, a

3
 = 1.1667

1 2 3 4 5 6
2

2.5

3

3.5

4
a

1
 = 3, a

2
 = -1.3487e-15, a

3
 = 2.0724e-16

1 2 3 4 5 6
3

3.5

4

4.5

5

5.5

6
a

1
 = -0.33333, a

2
 = 4, a

3
 = -0.66667

1 2 3 4 5 6
2

3

4

5

6
a

1
 = Inf, a

2
 = Inf, a

3
 = Inf

8/18



Example 1.3: Least-Squares Data Fitting

Consider previous example: new (4th) data point (3, 6) fits the model

If y4 6= 6 or other data points (measurements) suffer from errors → model equation
y = a1 + a2x + a3x

2 cannot be solved exactly!

Residual vector for m “pieces” of data

r = y − A a =


y1 − (a1 + a2x1 + a3x

2
1 )

y2 − (a1 + a2x2 + a3x
2
2 )

. . .
ym − (a1 + a2xm + a3x

2
m)


Least-squares data fitting: (common approach)

min
a∈R3

f (a) = r 21 + r 22 + · · ·+ r 2m =
m∑
i=1

(
yi − (a1 + a2xi + a3x

2
i )
)2
,

where a = [a1 a2 a3]T .

(2, 1), (4, 9), (7, 6), (3, 6) - “perfect match” → r = 0

otherwise → r 6= 0, where ri describes data “mismatch”, i = 1, . . . ,m
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Feasibility

Constrained optimization problem (simplified, state x is also control):

min
x∈Rn

f (x)

s.t. hi (x) = 0, i = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . , m
(∗)

feasible region (set) S: a set of all solutions
satisfying (∗)
feasible solution: x ∈ S
boundary of feasible region and interior points

active constraint gi (x) ≤ 0 at x0:
if gi (x0) = 0

active set of constraints at x0: all active
constraints

eliminating constrains by adding them to
objective (substitution, Lagrange multipliers)

 

x1 

x2 x2 

S 
xA 

xB 
xC 

xD 

#1 

#3 

#2 
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Optimality

Consider general optimization problem:

min
x∈Rn

f (x)

s.t. x ∈ S

 

x 

f(x) 

x1 x2 x3 

 

x 

f(x) 

x1 a b 

S 

x∗ is a global minimizer of f in S: if ∀x ∈ S f (x∗) ≤ f (x)

x∗ is a local minimizer of f in S: if ∀x ∈ S s.t. ‖x− x∗‖ < ε f (x∗) ≤ f (x)

in case f (x∗) < f (x), but x 6= x∗, x∗ is a strict local (global) minimizer
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Convexity (convex set vs. convex function)

A set S is convex if ∀x, y ∈ S : αx + (1− α)y ∈ S, ∀ 0 ≤ α ≤ 1

 

x y 
(α = 0) (α = 1) 

(a) 1D: convex

 

(b) 2D: convex

 

(c) 2D: non-convex

 

x 

f(x) 

x αx+(1-α)y y 

f(x) 

f(y) 

f[αx+(1-α)y] 

αf(x)+(1-α)f(y) 

A function f is convex on a convex set S if ∀x, y ∈ S :

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

∀ 0 ≤ α ≤ 1

in case of ≥ function f is concave

strictly convex/concave for < or >
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General Optimization Algorithm (iterative)

To solve the problem:
min
x∈Rn

f (x)

s.t. x ∈ S

1 Choose initial guess x0 (and algorithm settings)

2 For k = 1, 2, . . . check (computational) optimality of xk , e.g.

I xk reduces f (x) up to a necessary level
I ∇f (xk) ∼= 0 (local optimum condition)
I other termination conditions (next slide)

3 If OK (optimal) → STOP

4 Find solution update (change, perturbation) δk ,
e.g. by means of search direction dk

5 Update the solution
xk+1 = xk + δk = xk + αkdk

6 Go to 2

search direction dk improves the solution in some sense, e.g. dk = −∇f (xk)

step size αk is determined in assumption f (xk+1) < f (xk)
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General Optimization Algorithm (cont’d): Termination Conditions

Based on

1 sufficient changes in the solution: (in some norm N)

I absolute decrease
∥∥xk − xk−1

∥∥
N
< ε

I relative decrease

∥∥xk − xk−1
∥∥
N

‖xk−1‖N
< ε

2 sufficient changes in the objective:

I absolute decrease
∣∣f (xk)− f (xk−1)

∣∣ < ε

I relative decrease

∣∣∣∣ f (xk)− f (xk−1)

f (xk−1)

∣∣∣∣ < ε (F)

3 computational efforts:

I max number of optimization iterations kmax: k > kmax (F)

I max number of objective evaluations

I limit on elapsed computational time T : t > T

Q: (F) are recommended options (problem dependent). Why?
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Convergence

 
x0 

x2 

x1 

x*
 

x3 

x0 x1 
x2 

x3 x4 
x5 

x6 

x99 

Computational complexity: # of arithmetic operations
required to find a solution

Solving a problem iteratively: does it converge? if yes, how
fast?

Sequence of errors ek = xk − x∗ assuming lim
k→∞

ek = 0

Sequence {xk} converges to x∗
(
{xk} → x∗

)
with rate r

and constant C if

lim
k→∞

‖ek+1‖
‖ek‖r = lim

k→∞

‖xk+1 − x∗‖
‖xk − x∗‖r = C , C <∞

linear convergence: ‖ek+1‖ = C‖ek‖, r = 1
I 0 < C < 1 – converges (C → 0 faster, C → 1 slower)
I C > 1 – diverges

superlinear: C = 0, also r > 1

sublinear: C = 1

quadratic r = 2; cubic r = 3; . . .

hard to analyze in real computations as x∗ is not always available
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Homework for Chapter 1

Solve problem in Example 1.1 analytically.

Modify MATLAB code Chapter 1 data fit.m for Example 1.2:

I to work with new data (4 or 5 points) by using all 3 solution approaches,

I repeat for data with m (m > 5) points,

I implement check-up to prevent code breaking in case the problem is under-
or overdetermined,

I implement check-up to prevent inf/nan problem in case the data is
“defective”.

Show that a set is convex if and only if its intersection with any line is convex.

In general the product or ratio of two convex functions is not convex. However,

there are some results that apply to functions on R. Prove the following.

I If f and g are convex, both nondecreasing (or nonincreasing), and positive
functions on an interval, then fg is convex.

I If f is convex, nondecreasing, and positive, and g is concave, nonincreasing,
and positive, then f /g is convex.
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Homework for Chapter 1 (cont’d)

Using second-order condition for convexity for each of the following functions

determine whether it is convex or concave:

(a) f (x) = ex − 1 on R,

(b) f (x1, x2) = x1x2 on R+ × R+,

(c) f (x1, x2) =
1

x1x2
on R+ × R+,

(d) f (x1, x2) =
x2
1

x2
on R× R+,

(e) f (x1, x2) = xα
1 x

1−α
2 , where 0 ≤ α ≤ 1, on R+ × R+.

For each of the following sequences with given general term xk , prove that the

sequence converges, find its limit, and determine convergence parameters r and C :

(a) xk = 2−k ,

(b) xk = 1 + 5 · 10−2k ,

(c) xk = 3−k2 .
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Where to Read More for Chapter 1

Bukshtynov (2023): Chapter 1

Bertsimas (1997): Chapter 1 (Introduction), Chapter 2 (The Geometry of Linear
Programming)

Boyd (2004): Chapter 1 (Introduction), Chapter 2 (Convex Sets), Chapter 3
(Convex Functions)

Griva (2009): Chapter 1 (Optimization Models), Chapter 2 (Fundamentals of
Optimization)

Nocedal (2006): Chapter 1 (Introduction), Chapter 2 (Fundamentals of
Unconstrained Optimization)

MATLAB codes for Chapter 1

Chapter 1 data fit.m

DataFitM.m
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