

Topics in Numerical and Computational Mathematics

Computational Optimization:

Success in Practice

Chapter 1: Introduction to Optimization

© 2023 by Vladislav Bukshtynov VladislavBukshtynov@yahoo.com

CRC Press https://www.crcpress.com/

Optimization Models

Main goal:

- formulate a model in terms of mathematical notations, and
- find the set of parameters for this model attempting to find the best possible solution for the problem the model is created for

Model complexity:

- model size
- simplicity to find accurate mathematical description

Examples:

- Models to describe medical, biological, chemical processes.
- Better knowledge of natural objects to minimize loses from natural disasters & maximize profit from its power.
- Design of the business structures to minimize loses and maximize profit.
- Geometry of airfoil/rocket/submarine to minimize weight/drag and to maximize lift.
- Other examples from your own research and expertise area(s).

General Notations for Optimization Problem

$$\begin{aligned} & \min / \max_{\mathbf{u} \in \mathbb{R}^n} & f(\mathbf{u}) \\ & \text{subject to} & h_i(\mathbf{x}; \mathbf{u}) = 0, & i = 1, \dots, p \\ & g_j(\mathbf{x}; \mathbf{u}) \leq 0, & j = 1, \dots, m \end{aligned}$$

- min/max problem
- ullet optimization (control, decision, design) variable $\mathbf{u} \in \mathbb{R}^n$
 - state x vs. control u variables
- objective (cost) function(al) $f(\mathbf{u}) : \mathbb{R}^n \to \mathbb{R}$ (scalar)
 - in general we consider $f(\mathbf{x}; \mathbf{u})$
- constraints
 - equality/inequality
 - ODE/PDE systems
 - ightharpoonup other requirements, e.g. functional spaces for x and u
- feasible region (feasible set, control/solution space) S, defined by constraints
 - ▶ feasible $u \in S$ vs. infeasible $u \notin S$ solutions
- optimal solution $\mathbf{u}^* = \underset{\mathbf{u} \in \mathbb{S}}{\operatorname{argmin}} f(\mathbf{u})$

Classification of Optimization Problems

- type of constraints: unconstrained/constrained (ODE/PDE-based optimization)
- nature of equations involved: linear programming (LP) & nonlinear programming (NLP) problems, quadratic (QP), etc.
- permissible values of controls: continuous, discrete (e.g. integer programming)
- deterministic nature of variables: deterministic, stochastic (or probabilistic)
- separability of functions: separable, non-separable
- number of objectives: single-objective, multi-objective
- other types: optimal control, non-optimal control, etc.

Example 1.1: Constrained Optimization with Nonlinear Objective

Find the point
$$\mathbf{x} = [x_1 \ x_2]^T \in \mathbb{R}^2$$
 on the line $x_1 + x_2 = 10$ closest to the point (10, 10)
$$d = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \to \text{minimize}$$

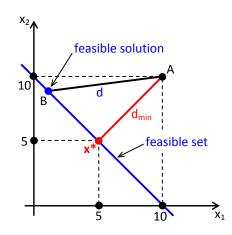
Problem: constrained 2D QP optimization

$$\min_{\mathbf{x} \in \mathbb{R}^2} \qquad f(\mathbf{x}) = (x_1 - 10)^2 + (x_2 - 10)^2$$

s.t. $x_1 + x_2 = 10$

Solution: optimal $\mathbf{x}^* = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$ found

- geometrically (in figure)
- analytically (goes to homework)



Example 1.2: Data Fitting

Data: 3 points (2,1), (4,9), (7,6)

Find coefficients a_1 , a_2 , a_3 assuming quadratic fit $y = a_1 + a_2x + a_3x^2$

Solution (exact): $\mathbf{a} = \begin{bmatrix} -15 & 10 & -1 \end{bmatrix}^T$ or $y(x) = -15 + 10x - x^2$ found from the system of linear equations

$$\begin{cases} a_1 + 2a_2 + 4a_3 & = 1, \\ a_1 + 4a_2 + 16a_3 & = 9, \\ a_1 + 7a_2 + 49a_3 & = 6. \end{cases}$$

Using matrix notation:

$$A \mathbf{a} = \mathbf{y} \quad \Rightarrow \quad \mathbf{a} = A^{-1} \mathbf{y},$$

where

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 4 & 16 \\ 1 & 7 & 49 \end{bmatrix}, \quad \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 9 \\ 6 \end{bmatrix}$$

polynomial curve data points 3

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 9 \\ 6 \end{bmatrix}$$

solvable (conditionally): # of data = # of unknowns; what are the conditions?

Q: what if the problem is overdetermined (>) / underdetermined (<)?

Example 1.2: Data Fitting (cont'd)

MATLAB code: Chapter_1_data_fit.m

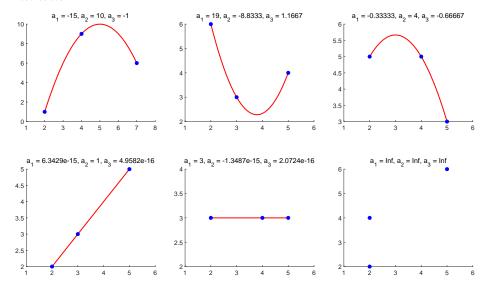
- input data: data = [2 1; 4 9; 7 6];
- solution #1: by separate m-code DataFitM.m
- solution #2: by user-defined m-function DataFitFn
- solution #3: by Matlab's built-in function POLYFIT(X,Y,N)
- solution conversion: polynomial preparation
- visualization

Aspects to consider:

- implementation: m-code vs. user-defined function vs. built-in function
- code readability: block-wise structures, comments, self-explanatory naming, etc.
- user-defined interface to prevent code breaking
- proper debugging with multiple tests & special cases (next slide)
- visualization to comfort analysis of the results

Example 1.2: Data Fitting (cont'd)

Test cases:



Example 1.3: Least-Squares Data Fitting

Consider previous example: new (4th) data point (3,6) fits the model

If $y_4 \neq 6$ or other data points (measurements) suffer from errors \rightarrow model equation $y = a_1 + a_2 x + a_3 x^2$ cannot be solved exactly!

Residual vector for m "pieces" of data

$$\mathbf{r} = \mathbf{y} - A \mathbf{a} = \begin{bmatrix} y_1 - (a_1 + a_2 x_1 + a_3 x_1^2) \\ y_2 - (a_1 + a_2 x_2 + a_3 x_2^2) \\ \dots \\ y_m - (a_1 + a_2 x_m + a_3 x_m^2) \end{bmatrix}$$

Least-squares data fitting: (common approach)

$$\min_{\mathbf{a}\in\mathbb{R}^3} f(\mathbf{a}) = r_1^2 + r_2^2 + \cdots + r_m^2 = \sum_{i=1}^m \left(y_i - \left(a_1 + a_2 x_i + a_3 x_i^2 \right) \right)^2,$$

where $\mathbf{a} = [a_1 \ a_2 \ a_3]^T$.

- (2,1),(4,9),(7,6),(3,6) "perfect match" $\rightarrow \mathbf{r} = \mathbf{0}$
- ullet otherwise o ${f r}
 eq {f 0}$, where r_i describes data "mismatch", $i=1,\ldots,m$

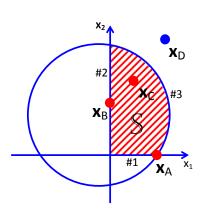
Feasibility

Constrained optimization problem (simplified, state x is also control):

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
s.t. $h_i(\mathbf{x}) = 0, \quad i = 1, ..., p$

$$g_j(\mathbf{x}) \le 0, \quad j = 1, ..., m$$
(*)

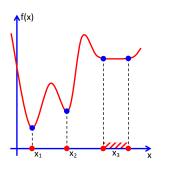
- feasible region (set) \mathbb{S} : a set of all solutions satisfying (*)
- feasible solution: $\mathbf{x} \in \mathbb{S}$
- boundary of feasible region and interior points
- active constraint $g_i(\mathbf{x}) \leq 0$ at \mathbf{x}_0 : if $g_i(\mathbf{x}_0) = 0$
- active set of constraints at x₀: all active constraints
- eliminating constrains by adding them to objective (substitution, Lagrange multipliers)

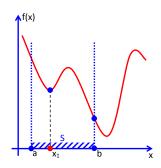


Optimality

Consider general optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
s.t. $\mathbf{x} \in \mathbb{S}$

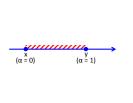


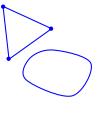


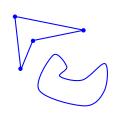
- \mathbf{x}^* is a global minimizer of f in \mathbb{S} : if $\forall \mathbf{x} \in \mathbb{S}$ $f(\mathbf{x}^*) \leq f(\mathbf{x})$
- \mathbf{x}^* is a local minimizer of f in \mathbb{S} : if $\forall \mathbf{x} \in \mathbb{S}$ s.t. $\|\mathbf{x} \mathbf{x}^*\| < \epsilon$ $f(\mathbf{x}^*) \leq f(\mathbf{x})$
- in case $f(\mathbf{x}^*) < f(\mathbf{x})$, but $\mathbf{x} \neq \mathbf{x}^*$, \mathbf{x}^* is a strict local (global) minimizer

Convexity (convex set vs. convex function)

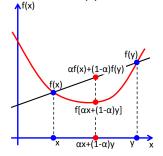
A set \mathbb{S} is convex if $\forall \mathbf{x}, \mathbf{y} \in \mathbb{S}$: $\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathbb{S}$, $\forall 0 < \alpha < 1$







(a) 1D: convex (b) 2D: convex (c) 2D: non-convex



A function
$$f$$
 is convex on a convex set \mathbb{S} if $\forall \mathbf{x}, \mathbf{y} \in \mathbb{S}$:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

$$\forall \ 0 < \alpha < 1$$

- in case of \geq function f is concave
- strictly convex/concave for < or >

General Optimization Algorithm (iterative)

To solve the problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
s.t. $\mathbf{x} \in \mathbb{S}$

- Choose initial guess x⁰ (and algorithm settings)
- ② For k = 1, 2, ... check (computational) optimality of \mathbf{x}^k , e.g.
 - \triangleright \mathbf{x}^k reduces $f(\mathbf{x})$ up to a necessary level
 - ▶ $\nabla f(\mathbf{x}^k) \cong \mathbf{0}$ (local optimum condition)
 - other termination conditions (next slide)
- If OK (optimal) → STOP
- **③** Find solution update (change, perturbation) δ^k , e.g. by means of search direction \mathbf{d}^k
- Update the solution

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \boldsymbol{\delta}^k = \mathbf{x}^k + \alpha^k \mathbf{d}^k$$

- Go to 2
- search direction \mathbf{d}^k improves the solution in some sense, e.g. $\mathbf{d}^k = -\nabla f(\mathbf{x}^k)$
- step size α^k is determined in assumption $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$

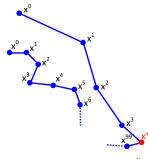
General Optimization Algorithm (cont'd): Termination Conditions

Based on

- lacktriangledown sufficient changes in the solution: (in some norm N)
 - ▶ absolute decrease $\|\mathbf{x}^k \mathbf{x}^{k-1}\|_{N} < \epsilon$
 - ▶ relative decrease $\frac{\left\|\mathbf{x}^k \mathbf{x}^{k-1}\right\|_N}{\left\|\mathbf{x}^{k-1}\right\|_N} < \epsilon$
- 2 sufficient changes in the objective:
 - ▶ absolute decrease $|f(\mathbf{x}^k) f(\mathbf{x}^{k-1})| < \epsilon$
 - ▶ relative decrease $\left| \frac{f(\mathbf{x}^k) f(\mathbf{x}^{k-1})}{f(\mathbf{x}^{k-1})} \right| < \epsilon$ (★)
- computational efforts:
 - ▶ max number of optimization iterations k_{max} : $k > k_{\text{max}}$ (★)
 - max number of objective evaluations
 - ▶ limit on elapsed computational time T: t > T

Q: (*) are recommended options (problem dependent). Why?

Convergence



Computational complexity: # of arithmetic operations required to find a solution

Solving a problem iteratively: does it converge? if yes, how fast?

Sequence of errors $\mathbf{e}^k = \mathbf{x}^k - \mathbf{x}^*$ assuming $\lim_{k \to \infty} \mathbf{e}^k = \mathbf{0}$

Sequence $\{\mathbf{x}^k\}$ converges to \mathbf{x}^* $(\{\mathbf{x}^k\} \to \mathbf{x}^*)$ with rate r

and constant C if

$$\lim_{k\to\infty}\frac{\|\mathbf{e}^{k+1}\|}{\|\mathbf{e}^k\|^r}=\lim_{k\to\infty}\frac{\|\mathbf{x}^{k+1}-\mathbf{x}^*\|}{\|\mathbf{x}^k-\mathbf{x}^*\|^r}=C,\quad C<\infty$$

- linear convergence: $\|\mathbf{e}^{k+1}\| = C\|\mathbf{e}^k\|$, r = 1
 - ▶ 0 < C < 1 converges ($C \rightarrow 0$ faster, $C \rightarrow 1$ slower)
 - ightharpoonup C > 1 diverges
- superlinear: C = 0, also r > 1
- sublinear: C=1
- quadratic r = 2; cubic r = 3; ...
- hard to analyze in real computations as x* is not always available

Homework for Chapter 1

- Solve problem in Example 1.1 analytically.
- Modify MATLAB code Chapter_1_data_fit.m for Example 1.2:
 - ▶ to work with new data (4 or 5 points) by using all 3 solution approaches,
 - repeat for data with m (m > 5) points,
 - implement check-up to prevent code breaking in case the problem is underor overdetermined,
 - implement check-up to prevent inf/nan problem in case the data is "defective".
- Show that a set is convex if and only if its intersection with any line is convex.
- In general the product or ratio of two convex functions is not convex. However, there are some results that apply to functions on R. Prove the following.
 - ▶ If f and g are convex, both nondecreasing (or nonincreasing), and positive functions on an interval, then fg is convex.
 - ▶ If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and positive, then f/g is convex.

Homework for Chapter 1 (cont'd)

- Using second-order condition for convexity for each of the following functions determine whether it is convex or concave:
 - (a) $f(x) = e^x 1$ on \mathbb{R} ,
 - (b) $f(x_1, x_2) = x_1x_2$ on $\mathbb{R}_+ \times \mathbb{R}_+$,
 - (c) $f(x_1, x_2) = \frac{1}{x_1 x_2}$ on $\mathbb{R}_+ \times \mathbb{R}_+$,
 - (d) $f(x_1,x_2)=\frac{x_1^2}{x_2}$ on $\mathbb{R}\times\mathbb{R}_+$,
 - (e) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$, on $\mathbb{R}_+ \times \mathbb{R}_+$.
- For each of the following sequences with given general term x^k , prove that the sequence converges, find its limit, and determine convergence parameters r and C:
 - (a) $x^k = 2^{-k}$,
 - (b) $x^k = 1 + 5 \cdot 10^{-2k}$,
 - (c) $x^k = 3^{-k^2}$.

Where to Read More for Chapter 1

- Bukshtynov (2023): Chapter 1
- Bertsimas (1997): Chapter 1 (Introduction), Chapter 2 (The Geometry of Linear Programming)
- Boyd (2004): Chapter 1 (Introduction), Chapter 2 (Convex Sets), Chapter 3 (Convex Functions)
- **Griva (2009):** Chapter 1 (Optimization Models), Chapter 2 (Fundamentals of Optimization)
- Nocedal (2006): Chapter 1 (Introduction), Chapter 2 (Fundamentals of Unconstrained Optimization)

MATLAB codes for Chapter 1

- Chapter_1_data_fit.m
- DataFitM.m